Deep Learning for Crowd Anomaly Detection
Today, public areas across the globe are monitored by an increasing amount of surveillance cameras. This widespread usage has presented an ever-growing volume of data that cannot realistically be examined in real-time. Therefore, efforts to understand crowd dynamics have brought light to automatic systems for the detection of anomalies in crowds. This thesis explores the methods used across literature for this purpose, with a focus on those fusing dense optical flow in a feature extraction stage to the crowd anomaly detection problem. To this extent, five different deep learning architectures are trained using optical flow maps estimated by three deep learning-based techniques. More specifi…