0000000000000972

AUTHOR

Lena M. Kranz

Abstract A004: Systemic RNA vaccines: Connecting effective cancer immunotherapy with antiviral defense mechanisms

Abstract Mechanisms of antiviral host defense are important for survival and evolutionarily optimized for high sensitivity and potency. Intending to harvest the multitude of highly specialized and intertwined pathogen immune defense programs for cancer immunotherapy, we simulated a systemic pathogen intrusion into the blood stream by intravenous injection of lipid-formulated, tumor antigen-encoding mRNA nanoparticles. These RNA-lipoplexes (RNA-LPX) were directed to various lymphoid tissues, including the spleen, lymph nodes and bone marrow, which provide the ideal microenvironment for efficient priming and amplification of T cell responses. Solely the RNA-to-lipid ratio was discovered to de…

research product

Abstract CT034: A first-in-human phase I/II clinical trial assessing novel mRNA-lipoplex nanoparticles for potent melanoma immunotherapy

Abstract Therapeutic vaccination with tumor antigen-encoding RNAs by local administration is currently being successfully employed in various clinical trials. Advancing from local to more efficient systemic targeting of antigen-presenting cells (APCs), we have developed pioneering RNA-lipoplex (RNA(LIP)) immunotherapeutics for intravenous application based on the employment of well-known lipid carriers without the need for functionalization of particles with molecular ligands. The novel RNA(LIP) formulation has been engineered to preserve RNA integrity after intravenous injection and physicochemically optimized for efficient uptake and expression of the encoded antigen by APCs in various ly…

research product

A noninflammatory mRNA vaccine for treatment of experimental autoimmune encephalomyelitis.

Precision therapy for immune tolerance Autoimmune diseases, such as multiple sclerosis (MS), result from a breach of immunological self-tolerance and tissue damage by autoreactive T lymphocytes. Current treatments can cause systemic immune suppression and side effects such as increased risk of infections. Krienke et al. designed a messenger RNA vaccine strategy that lacks adjuvant activity and delivers MS autoantigens into lymphoid dendritic cells. This approach expands a distinct type of antigen-specific effector regulatory T cell that suppresses autoreactivity against targeted autoantigens and promotes bystander suppression of autoreactive T cells against other myelin-specific autoantigen…

research product

CIMT 2016: Mechanisms of efficacy in cancer immunotherapy — Report on the 14th Annual Meeting of the Association for Cancer Immunotherapy May 10–12 2016, Mainz, Germany

research product

BNT162b2 induces SARS-CoV-2-neutralising antibodies and T cells in humans

BNT162b2, a lipid nanoparticle (LNP) formulated nucleoside-modified messenger RNA (mRNA) encoding the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein (S) stabilized in the prefusion conformation, has demonstrated 95% efficacy to prevent coronavirus disease 2019 (COVID-19). Recently, we reported preliminary BNT162b2 safety and antibody response data from an ongoing placebo-controlled, observer-blinded phase 1/2 vaccine trial1. We present here antibody and T cell responses from a second, non-randomized open-label phase 1/2 trial in healthy adults, 19-55 years of age, after BNT162b2 prime/boost vaccination at 1 to 30 µg dose levels. BNT162b2 elicited strong antibody …

research product

Dexamethasone premedication suppresses vaccine-induced immune responses against cancer

ABSTRACT Glucocorticosteroids (GCS) have an established role in oncology and are administered to cancer patients in routine clinical care and in drug development trials as co-medication. Given their strong immune-suppressive activity, GCS may interfere with immune-oncology drugs. We are developing a therapeutic cancer vaccine, which is based on a liposomal formulation of tumor-antigen encoding RNA (RNA-LPX) and induces a strong T-cell response both in mice as well as in humans. In this study, we investigated in vivo in mice and in human PBMCs the effect of the commonly used long-acting GCS Dexamethasone (Dexa) on the efficacy of this vaccine format, with a particular focus on antigen-specif…

research product

Improving mRNA-Based Therapeutic Gene Delivery by Expression-Augmenting 3' UTRs Identified by Cellular Library Screening.

Synthetic mRNA has emerged as a powerful tool for the transfer of genetic information, and it is being explored for a variety of therapeutic applications. Many of these applications require prolonged intracellular persistence of mRNA to improve bioavailability of the encoded protein. mRNA molecules are intrinsically unstable and their intracellular kinetics depend on the UTRs embracing the coding sequence, in particular the 3′ UTR elements. We describe here a novel and generally applicable cell-based selection process for the identification of 3′ UTRs that augment the expression of proteins encoded by synthetic mRNA. Moreover, we show, for two applications of mRNA therapeutics, namely, (1) …

research product

Abstract CT032: A first-in-human phase I/II clinical trial assessing novel mRNA-lipoplex nanoparticles for potent cancer immunotherapy in patients with malignant melanoma

Abstract Immunotherapeutic approaches have evolved as promising and valid alternatives to available conventional cancer treatments. Amongst others, vaccination with tumor antigen-encoding RNAs by local administration is currently successfully employed in various clinical trials. To allow for a more efficient targeting of antigen-presenting cells (APCs) and to overcome potential technical challenges associated with local administration, we have developed a novel RNA immunotherapeutic for systemic application based on a fixed set of four liposome complexed RNA drug products (RNA(LIP)), each encoding one shared melanoma-associated antigen. The novel RNA(LIP) formulation was engineered (i) to p…

research product

mRNA: A Versatile Molecule for Cancer Vaccines

mRNA vaccines are finally ready to assume their rightful place at the forefront of nucleic acid- based vaccines. Major achievements within the last two decades have turned this highly versatile molecule into a safe and very attractive pharmaceutical platform that combines many positive attributes able to address a broad range of diseases, including cancer. The simplicity of mRNA vaccines greatly reduces complications generally associated with the production of biological vaccines. Intrinsic costimulatory and inflammatory triggers in addition to the provision of the antigenic information makes mRNA an all- in-one molecule that does not need additional adjuvants and that does not pose the ris…

research product

BNT162b vaccines are immunogenic and protect non-human primates against SARS-CoV-2

AbstractA safe and effective vaccine against COVID-19 is urgently needed in quantities sufficient to immunise large populations. We report the preclinical development of two BNT162b vaccine candidates, which contain lipid-nanoparticle (LNP) formulated nucleoside-modified mRNA encoding SARS-CoV-2 spike glycoprotein-derived immunogens. BNT162b1 encodes a soluble, secreted, trimerised receptor-binding domain (RBD-foldon). BNT162b2 encodes the full-length transmembrane spike glycoprotein, locked in its prefusion conformation (P2 S). The flexibly tethered RBDs of the RBD-foldon bind ACE2 with high avidity. Approximately 20% of the P 2S trimers are in the two-RBD ‘down,’ one-RBD ‘up’ state. In mi…

research product

CIMT 2013

The 11th Annual Meeting of Association for Cancer Immunotherapy (CIMT) welcomed more than 700 scientists around the world to Mainz, Germany and continued to be the largest immunotherapy meeting in Europe. Renowned speakers from various fields of cancer immunotherapy gave lectures under CIMT2013’s tag: “Advancing targeted therapies” the highlights of which are summarized in this meeting report.

research product

CIMT 2014: Next waves in cancer immunotherapy - Report on the 12th annual meeting of the Association for Cancer Immunotherapy

More than 900 scientists around the world visited the 12th Annual Meeting of the Association for Cancer Immunotherapy (CIMT) in Mainz, Germany from 6–8 May, 2014. Recent advancements in various spe...

research product

Abstract CT156: A first-in-human phase I/II clinical trial assessing novel mRNA-lipoplex nanoparticles encoding shared tumor antigens for immunotherapy of malignant melanoma

Abstract Therapeutic vaccination with tumor antigen-encoding RNAs is being investigated in various clinical trials. Typically, the RNA vaccine is administered intradermally, subcutaneously or intranodally with the intention to get expression of the encoded antigens in local antigen-presenting cells (APCs). We have developed a novel class of RNA-lipoplex (RNA(LIP)) immunotherapeutics for intravenous application, which allow systemic targeting of APCs. RNA(LIP) is a novel nanoparticulate formulation of lipid-complexed mRNA which selectively delivers the functional mRNA to APCs in lymphoid compartments body-wide for efficient mRNA uptake and expression of the encoded antigen by APCs. Moreover,…

research product

CIMT 2017: Anniversary symposium - Report on the 15th CIMT Annual Meeting of the Association for Cancer Immunotherapy

The 15th Annual Meeting of the Association for Cancer Immunotherapy (CIMT) took place May 10–11, 2017, Mainz, Germany during which scientists and CIMT members from all over the world not only celeb...

research product

549 An RNA-lipoplex (RNA-LPX) vaccine demonstrates strong immunogenicity and promising clinical activity in a Phase I trial in cutaneous melanoma patients with no evidence of disease at trial inclusion

BackgroundLipo-MERIT is an ongoing, first-in-human, open-label, dose-escalation Phase I trial investigating safety, tolerability and immunogenicity of BNT111 in patients with advanced melanoma. BNT111 is an RNA-LPX vaccine targeting the melanoma tumor-associated antigens (TAAs) New York esophageal squamous cell carcinoma 1 (NY-ESO-1), tyrosinase, melanoma-associated antigen 3 (MAGE-A3), and transmembrane phosphatase with tensin homology (TPTE). A previous exploratory interim analysis showed that BNT111, alone or combined with immune checkpoint inhibition (CPI), has a favorable adverse event (AE) profile, gives rise to antigen-specific T-cell responses and induces durable objective responses…

research product

Abstract B041: A novel nanoparticular formulated tetravalent RNA cancer vaccine for treatment of patients with malignant melanoma

Abstract Immunotherapeutic approaches have evolved as promising and valid alternatives to available conventional cancer treatments. Amongst others, vaccination with tumor antigen-encoding RNAs by local administration is currently successfully employed in various clinical trials. To allow for a more efficient targeting of antigen-presenting cells (APCs) we have developed a novel RNA immunotherapeutic for systemic application based on a fixed set of four liposome complexed RNA drug products (RNA(LIP)) each encoding one shared melanoma-associated antigen. Similar to other liposomal drugs, the four injectable RNA(LIP) products constituting the investigational medicinal product will be prepared …

research product

CIMT 2015: The right patient for the right therapy - Report on the 13th annual meeting of the Association for Cancer Immunotherapy

The 13th Annual Meeting of the Association for Cancer Immunotherapy (CIMT) brought together more than 800 scientists in Mainz, Germany, from May 11–13, 2015, to present and discuss current research...

research product

Translating nanoparticulate-personalized cancer vaccines into clinical applications: case study with RNA-lipoplexes for the treatment of melanoma

The development of nucleic acid based vaccines against cancer has gained considerable momentum through the advancement of modern sequencing technologies and on novel RNA-based synthetic drug formats, which can be readily adapted following identification of every patient's tumor-specific mutations. Furthermore, affordable and individual ‘on demand’ production of molecularly optimized vaccines should allow their application in large groups of patients. This has resulted in the therapeutic concept of an active personalized cancer vaccine, which has been brought into clinical testing. Successful trials have been performed by intranodal administration of sterile isotonic solutions of synthetic …

research product

An RNA vaccine drives expansion and efficacy of claudin-CAR-T cells against solid tumors.

A one-two, CAR-T cell punch Chimeric antigen receptor (CAR)–T cells have been clinically effective in killing certain hematological malignancies, but achieving long-term patient responses for solid tumors remains a challenge. Reinhard et al. describe a two-part “CARVac” strategy to overcome poor CAR-T cell stimulation and responses in vivo. They introduce the tight junction protein claudin 6 (CLDN6) as a new CAR-T cell target and designed a nanoparticulate RNA vaccine encoding a chimeric receptor directed toward CLDN6. This lipoplex RNA vaccine promotes CLDN6 expression on the surface of dendritic cells, which in turn stimulates and enhances the efficacy of CLDN6-CAR-T cells for improved tu…

research product

Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy

Lymphoid organs, in which antigen presenting cells (APCs) are in close proximity to T cells, are the ideal microenvironment for efficient priming and amplification of T-cell responses. However, the systemic delivery of vaccine antigens into dendritic cells (DCs) is hampered by various technical challenges. Here we show that DCs can be targeted precisely and effectively in vivo using intravenously administered RNA-lipoplexes (RNA-LPX) based on well-known lipid carriers by optimally adjusting net charge, without the need for functionalization of particles with molecular ligands. The LPX protects RNA from extracellular ribonucleases and mediates its efficient uptake and expression of the encod…

research product