0000000000000981

AUTHOR

Hossam Hefesha

Abstract A004: Systemic RNA vaccines: Connecting effective cancer immunotherapy with antiviral defense mechanisms

Abstract Mechanisms of antiviral host defense are important for survival and evolutionarily optimized for high sensitivity and potency. Intending to harvest the multitude of highly specialized and intertwined pathogen immune defense programs for cancer immunotherapy, we simulated a systemic pathogen intrusion into the blood stream by intravenous injection of lipid-formulated, tumor antigen-encoding mRNA nanoparticles. These RNA-lipoplexes (RNA-LPX) were directed to various lymphoid tissues, including the spleen, lymph nodes and bone marrow, which provide the ideal microenvironment for efficient priming and amplification of T cell responses. Solely the RNA-to-lipid ratio was discovered to de…

research product

Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy

Lymphoid organs, in which antigen presenting cells (APCs) are in close proximity to T cells, are the ideal microenvironment for efficient priming and amplification of T-cell responses. However, the systemic delivery of vaccine antigens into dendritic cells (DCs) is hampered by various technical challenges. Here we show that DCs can be targeted precisely and effectively in vivo using intravenously administered RNA-lipoplexes (RNA-LPX) based on well-known lipid carriers by optimally adjusting net charge, without the need for functionalization of particles with molecular ligands. The LPX protects RNA from extracellular ribonucleases and mediates its efficient uptake and expression of the encod…

research product