Genetic heterogeneity of porcine enteric caliciviruses identified from diarrhoeic piglets
Enteric caliciviruses (noroviruses and sapoviruses) are responsible for the majority of non-bacterial gastroenteritis in humans of all age groups. Analysis of the polymerase and capsid genes has provided evidence for a huge genetic diversity, but the understanding of their ecology is limited. In this study, we investigated the presence of porcine enteric caliciviruses in the faeces of piglets with diarrhoea. A total of 209 samples from 118 herds were analysed and calicivirus RNA was detected by RT-PCR in 68 sample (32.5%) and in 46 herds (38.9%), alone or in mixed infection with group A and C rotaviruses. Sequence and phylogenetic analysis of the calicivirus-positive samples characterized t…
Identification of group A porcine rotavirus strains bearing a novel VP4 (P) genotype in Italian swine herds.
ABSTRACT The VP4 gene of a G5 Italian porcine rotavirus strain, 344/04-1, was nontypeable by PCR genotyping. The amino acid sequence of the full-length VP4 protein had low identity (≤76.6%) with the homologous sequences of representative strains of the remaining P genotypes, providing evidence for a novel P genotype.
Prevalence of group C rotaviruses in weaning and post-weaning pigs with enteritis.
Diarrheic fecal specimens collected from porcine herds were screened for the presence of group C rotaviruses using a reverse transcription-polymerase chain reaction (RT-PCR) assay. A total of 188 samples were tested and 54 were positive. When compiled these data with diagnostic results on group A rotaviruses and enteric caliciviruses we found that all but 5 group C rotavirus positive samples contained at least one additional virus. A subset of samples were subjected to nucleotide sequencing. The selected strains showed an unexpectedly wide range of nucleotide sequence heterogeneity (88.6-100%) to each other and to the reference porcine group C rotavirus strain, Cowden. The nucleotide sequen…