0000000000003064

AUTHOR

Nikolaus Schwentner

Time-dependent alignment of molecules trapped in octahedral crystal fields.

The hindered rotational states of molecules confined in crystal fields of octahedral symmetry, and their time-dependent alignment obtained by pulsed nonresonant laser fields, are studied computationally. The control over the molecular axis direction is discussed based on the evolution of the rotational wave packet generated in the cubic crystal-field potential. The alignment degree obtained in a cooperative case, where the alignment field is applied in a favorable crystal-field direction, or in a competitive direction, where the crystal field has a saddle point, is presented. The investigation is divided into two time regimes where the pulse duration is either ultrashort, leading to nonadia…

research product

Coherence and control of molecular dynamics in rare gas matrices

research product

Ultrafast dynamics of halogens in rare gas solids

We perform time resolved pump-probe spectroscopy on small halogen molecules ClF, Cl2, Br2, and I2 embedded in rare gas solids (RGS). We find that dissociation, angular depolarization, and the decoherence of the molecule is strongly influenced by the cage structure. The well ordered crystalline environment facilitates the modelling of the experimental angular distribution of the molecular axis after the collision with the rare gas cage. The observation of many subsequent vibrational wave packet oscillations allows the construction of anharmonic potentials and indicate a long vibrational coherence time. We control the vibrational wave packet revivals, thereby gaining information about the vib…

research product