0000000000003420

AUTHOR

Klaus Kirch

Johnson-Nyquist Noise Effects in Neutron Electric-Dipole-Moment Experiments

Magnetic Johnson-Nyquist noise (JNN) originating from metal electrodes, used to create a static electric field in neutron electric-dipole-moment (nEDM) experiments, may limit the sensitivity of measurements. We present here the first dedicated study on JNN applied to a large-scale long-measurement-time experiment with the implementation of a co-magnetometry. In this study, we derive surface- and volume-averaged root-mean-square normal noise amplitudes at a certain frequency bandwidth for a cylindrical geometry. In addition, we model the source of noise as a finite number of current dipoles and demonstrate a method to simulate temporal and three-dimensional spatial dependencies of JNN. The c…

research product

New constraints on Lorentz invariance violation from the neutron electric dipole moment

We propose an original test of Lorentz invariance in the interaction between a particle spin and an electromagnetic field and report on a first measurement using ultracold neutrons. We used a high sensitivity neutron electric dipole moment (nEDM) spectrometer and searched for a direction dependence of a nEDM signal leading to a modulation of its magnitude at periods of 12 and 24 hours. We constrain such a modulation to $d_{12} < 15 \times 10^{-25} \ e\,{\rm cm}$ and $d_{24} < 10 \times 10^{-25} \ e\,{\rm cm}$ at 95~\% C.L. The result translates into a limit on the energy scale for this type of Lorentz violation effect at the level of ${\cal E}_{LV} > 10^{10}$~GeV.

research product

First observation of trapped high-field seeking ultracold neutron spin states

Ultracold neutrons were stored in a volume, using a magnetic dipole field shutter. Radial confinement was provided by material walls. Low-field seeking neutrons were axially confined above the magnetic field. High-field seeking neutrons are trapped inside the magnetic field. They can systematically shift the measured neutron lifetime to lower values in experiments with magnetic confinement. ISSN:0370-2693 ISSN:0031-9163 ISSN:1873-2445

research product

Compact 20-pass thin-disk amplifier insensitive to thermal lensing

We present a multi-pass amplifier which passively compensates for distortions of the spherical phase front occurring in the active medium. The design is based on the Fourier transform propagation which makes the output beam parameters insensitive to variation of thermal lens effects in the active medium. The realized system allows for 20 reflections on the active medium and delivers a small signal gain of 30 with M$^2$ = 1.16. Its novel geometry combining Fourier transform propagations with 4f-imaging stages as well as a compact array of adjustable mirrors allows for a layout with a footprint of 400 mm x 1000 mm.

research product

Optically pumped Cs magnetometers enabling a high-sensitivity search for the neutron electric dipole moment

An array of 16 laser-pumped scalar Cs magnetometers was part of the neutron electric dipole moment (nEDM) experiment taking data at the Paul Scherrer Institute in 2015 and 2016. It was deployed to measure the gradients of the experiment's magnetic field and to monitor their temporal evolution. The originality of the array lies in its compact design, in which a single near-infrared diode laser drives all magnetometers that are located in a high-vacuum chamber, with a selection of the sensors mounted on a high-voltage electrode. We describe details of the Cs sensors' construction and modes of operation, emphasizing the accuracy and sensitivity of the magnetic-field readout. We present two app…

research product

Spatial hole burning in thin-disk lasers and twisted-mode operation.

Spatial hole burning prevents single-frequency operation of thin-disk lasers when the thin disk is used as a folding mirror. We present an evaluation of the saturation effects in the disk for disks acting as end-mirrors and as folding-mirrors explaining one of the main obstacles towards single-frequency operation. It is shown that a twisted-mode scheme based on a multi-order quarter-wave plate combined with a polarizer provides an almost complete suppression of spatial hole burning and creates an additional wavelength selectivity that enforces efficient single-frequency operation.

research product

Data Blinding for the nEDM Experiment at PSI

Psychological bias towards, or away from, prior measurements or theory predictions is an intrinsic threat to any data analysis. While various methods can be used to try to avoid such a bias, e.g. actively avoiding looking at the result, only data blinding is a traceable and trustworthy method that can circumvent the bias and convince a public audience that there is not even an accidental psychological bias. Data blinding is nowadays a standard practice in particle physics, but it is particularly difficult for experiments searching for the neutron electric dipole moment (nEDM), as several cross measurements, in particular of the magnetic field, create a self-consistent network into which it …

research product

Measurement of the permanent electric dipole moment of the neutron

We present the result of an experiment to measure the electric dipole moment (EDM) of the neutron at the Paul Scherrer Institute using Ramsey’s method of separated oscillating magnetic fields with ultracold neutrons. Our measurement stands in the long history of EDM experiments probing physics violating time-reversal invariance. The salient features of this experiment were the use of a 199Hg comagnetometer and an array of optically pumped cesium vapor magnetometers to cancel and correct for magnetic-field changes. The statistical analysis was performed on blinded datasets by two separate groups, while the estimation of systematic effects profited from an unprecedented knowledge of the magne…

research product

Neutron to mirror-neutron oscillations in the presence of mirror magnetic fields

We performed ultracold neutron (UCN) storage measurements to search for additional losses due to neutron (n) to mirror-neutron (n') oscillations as a function of an applied magnetic field B. In the presence of a mirror magnetic field B', UCN losses would be maximal for B = B'. We did not observe any indication for nn' oscillations and placed a lower limit on the oscillation time of tau_{nn'} > 12.0 s at 95% C.L. for any B' between 0 and 12.5 uT.

research product

Constraining interactions mediated by axion-like particles with ultracold neutrons

We report a new limit on a possible short range spin-dependent interaction from the precise measurement of the ratio of Larmor precession frequencies of stored ultracold neutrons and Hg199 atoms confined in the same volume. The measurement was performed in a ~1μT vertical magnetic holding field with the apparatus searching for a permanent electric dipole moment of the neutron at the Paul Scherrer Institute. A possible coupling between freely precessing polarized neutron spins and unpolarized nucleons of the wall material can be investigated by searching for a tiny change of the precession frequencies of neutron and mercury spins. Such a frequency change can be interpreted as a consequence o…

research product

Copper coated carbon fiber reinforced plastics for high and ultra high vacuum applications

We have used copper-coated carbon fiber reinforced plastic (CuCFRP) for the construction of high and ultra-high vacuum recipients. The vacuum performance is found to be comparable to typical stainless steel used for this purpose. In test recipients we have reached pressures of 2E-8 mbar and measured a desorption rate of 1E-11 mbar*liter/s/cm^2; no degradation over time (2 years) has been found. Suitability for baking has been found to depend on the CFRP production process, presumably on the temperature of the autoclave curing. Together with other unique properties of CuCFRP such as low weight and being nearly non-magnetic, this makes it an ideal material for many high-end vacuum application…

research product

nEDM experiment at PSI : data-taking strategy and sensitivity of the dataset

We report on the strategy used to optimize the sensitivity of our search for a neutron electric dipole moment at the Paul Scherrer Institute. Measurements were made upon ultracold neutrons stored within a single chamber at the heart of our apparatus. A mercury cohabiting magnetometer together with an array of cesium magnetometers were used to monitor the magnetic field, which was controlled and shaped by a series of precision field coils. In addition to details of the setup itself, we describe the chosen path to realize an appropriate balance between achieving the highest statistical sensitivity alongside the necessary control on systematic effects. The resulting irreducible sensitivity is …

research product

Statistical sensitivity of the nEDM apparatus at PSI to n − n′ oscillations

The neutron and its hypothetical mirror counterpart, a sterile state degenerate in mass, could spontaneously mix in a process much faster than the neutron β-decay. Two groups have performed a series of experiments in search of neutron – mirror-neutron (n − n′) oscillations. They reported no evidence, thereby setting stringent limits on the oscillation time τnn′. Later, these data sets have been further analyzed by Berezhiani et al.(2009–2017), and signals, compatible with n − n′ oscillations in the presence of mirror magnetic fields, have been reported. The Neutron Electric Dipole Moment Collaboration based at the Paul Scherrer Institute performed a new series of experiments to further test…

research product

Transmission of very slow neutrons through material foils and its influence on the design of ultracold neutron sources

At the Paul Scherrer Institute (PSI), a very intense source of ultracold neutrons (UCN) is being built. The UCN converter of solid deuterium must be contained in a vessel. Produced UCN leave that vessel through its top lid. To decide on the design of the vessel and the top lid, we have measured the transmission of neutrons with velocities between 3 and 20 m/s through different material foils. Contrary to expectations, we found that transmission through aluminium and aluminium alloys is equal or even higher compared to zirconium and reactor-grade zirconium alloys, respectively.

research product

Magnetic field uniformity in neutron electric dipole moment experiments

© 2019 American Physical Society. Magnetic-field uniformity is of the utmost importance in experiments to measure the electric dipole moment of the neutron. A general parametrization of the magnetic field in terms of harmonic polynomial modes is proposed, going beyond the linear-gradients approximation. We review the main undesirable effects of nonuniformities: depolarization of ultracold neutrons and Larmor frequency shifts of neutrons and mercury atoms. The theoretical predictions for these effects were verified by dedicated measurements with the single-chamber neutron electric-dipole-moment apparatus installed at the Paul Scherrer Institute. ispartof: Physical Review A vol:99 issue:4 sta…

research product

Multipass amplifiers with self-compensation of the thermal lens

We present a novel architecture for a multi-pass amplifier based on a succession of optical Fourier transforms and short propagations that shows a superior stability for variations of the thermal lens compared to state-of-the-art 4f-based amplifiers. We found that the proposed multi-pass amplifier is robust to variations of the active medium dioptric power. The superiority of the proposed architecture is demonstrated by analyzing the variations of the size and divergence of the output beam in form of a Taylor expansion around the design value for variations of the thermal lens in the active medium. The dependence of the output beam divergence and size is investigated also for variations of …

research product

Gravitational depolarization of ultracold neutrons : comparison with data

We compare the expected effects of so-called gravitationally enhanced depolarization of ultracold neutrons to measurements carried out in a spin-precession chamber exposed to a variety of vertical magnetic-field gradients. In particular, we have investigated the dependence upon these field gradients of spin depolarization rates and also of shifts in the measured neutron Larmor precession frequency. We find excellent qualitative agreement, with gravitationally enhanced depolarization accounting for several previously unexplained features in the data.

research product

The n2EDM experiment at the Paul Scherrer Institute

We present the new spectrometer for the neutron electric dipole moment (nEDM) search at the Paul Scherrer Institute (PSI), called n2EDM. The setup is at room temperature in vacuum using ultracold neutrons. n2EDM features a large UCN double storage chamber design with neutron transport adapted to the PSI UCN source. The design builds on experience gained from the previous apparatus operated at PSI until 2017. An order of magnitude increase in sensitivity is calculated for the new baseline setup based on scalable results from the previous apparatus, and the UCN source performance achieved in 2016.

research product

Comparison of ultracold neutron sources for fundamental physics measurements

Ultracold neutrons (UCNs) are key for precision studies of fundamental parameters of the neutron and in searches for new CP violating processes or exotic interactions beyond the Standard Model of particle physics. The most prominent example is the search for a permanent electric dipole moment of the neutron (nEDM). We have performed an experimental comparison of the leading UCN sources currently operating. We have used a 'standard' UCN storage bottle with a volume of 32 liters, comparable in size to nEDM experiments, which allows us to compare the UCN density available at a given beam port.

research product

A measurement of the neutron to 199Hg magnetic moment ratio

The neutron gyromagnetic ratio has been measured relative to that of the 199Hg atom with an uncertainty of 0.8 ppm. We employed an apparatus where ultracold neutrons and mercury atoms are stored in the same volume and report the result γn/γHg=3.8424574(30).

research product

Dynamic stabilization of the magnetic field surrounding the neutron electric dipole moment spectrometer at the Paul Scherrer Institute

The Surrounding Field Compensation (SFC) system described in this work is installed around the four-layer Mu-metal magnetic shield of the neutron electric dipole moment spectrometer located at the Paul Scherrer Institute. The SFC system reduces the DC component of the external magnetic field by a factor of about 20. Within a control volume of approximately 2.5m x 2.5m x 3m disturbances of the magnetic field are attenuated by factors of 5 to 50 at a bandwidth from $10^{-3}$ Hz up to 0.5 Hz, which corresponds to integration times longer than several hundreds of seconds and represent the important timescale for the nEDM measurement. These shielding factors apply to random environmental noise f…

research product

Demonstration of sensitivity increase in mercury free-spin-precession magnetometers due to laser-based readout for neutron electric dipole moment searches

International audience; We report on a laser based $^{199}$Hg co-magnetometer deployed in an experiment searching for a permanent electric dipole moment of the neutron. We demonstrate a more than five times increased signal to-noise-ratio in a direct comparison measurement with its $^{204}$Hg discharge bulb-based predecessor. An improved data model for the extraction of important system parameters such as the degrees of absorption and polarization is derived. Laser- and lamp-based data-sets can be consistently described by the improved model which permits to compare measurements using the two different light sources and to explain the increase in magnetometer performance. The laser-based ma…

research product

Physics beyond colliders at CERN: beyond the Standard Model working group report

The Physics Beyond Colliders initiative is an exploratory study aimed at exploiting the full scientific potential of the CERN's accelerator complex and scientific infrastructures through projects complementary to the LHC and other possible future colliders. These projects will target fundamental physics questions in modern particle physics. This document presents the status of the proposals presented in the framework of the Beyond Standard Model physics working group, and explore their physics reach and the impact that CERN could have in the next 10–20 years on the international landscape.

research product

Nuclear structure with radioactive muonic atoms

Muonic atoms have been used to extract the most accurate nuclear charge radii based on the detection of X-rays from the muonic cascades. Most stable and a few unstable isotopes have been investigated with muonic atom spectroscopy techniques. A new research project recently started at the Paul Scherrer Institut aims to extend the highresolution muonic atom spectroscopy for the precise determination of nuclear charge radii and other nuclear structure properties of radioactive isotopes. The challenge to combine the high-energy muon beam with small quantity of stopping mass is being addressed by developing the concept of stopping the muon in a high-density, a high-pressure hydrogen cell and sub…

research product

The next generation of laser spectroscopy experiments using light muonic atoms

Precision spectroscopy of light muonic atoms provides unique information about the atomic and nuclear structure of these systems and thus represents a way to access fundamental interactions, properties and constants. One application comprises the determination of absolute nuclear charge radii with unprecedented accuracy from measurements of the 2S - 2P Lamb shift. Here, we review recent results of nuclear charge radii extracted from muonic hydrogen and helium spectroscopy and present experiment proposals to access light muonic atoms with Z ≥ 3. In addition, our approaches towards a precise measurement of the Zemach radii in muonic hydrogen (μp) and helium (μ 3He+) are discussed. These resul…

research product

Measurement of the quadrupole moment of Re185 and Re187 from the hyperfine structure of muonic X rays

The hyperfine splitting of the 5g→4f transitions in muonic Re185,187 has been measured using high resolution high purity germanium detectors and compared to state-of-the-art atomic theoretical predictions. The spectroscopic quadrupole moment has been extracted using modern fitting procedures and compared to the values available in literature obtained from muonic x rays of natural rhenium. The extracted values of the nuclear spectroscopic quadrupole moment are 2.07(5) b and 1.94(5) b, respectively for Re185 and Re187.

research product

Passive alignment stability and auto-alignment of multipass amplifiers based on Fourier transforms.

The stability properties of Fourier-based multipass amplifier to misalignments (tilts) of its optical components has been investigated. For this purpose, a method to quantify the sensitivity to tilts based on the amplifier small signal gain has been elaborated and compared with measurements. To improve on the tilt stability by more than an order of magnitude a simple auto-alignment system has been proposed and tested. This study, combined with other investigations devoted to the stability of the output beam to variations of aperture and thermal lens effects of the active medium, qualifies the Fourier-based amplifier for the high-energy and the high-power sector.

research product

Losses and depolarization of ultracold neutrons on neutron guide and storage materials

At Institut Laue-Langevin (ILL) and Paul Scherrer Institute (PSI), we have measured the losses and depolarization probabilities of ultracold neutrons on various materials: (i) nickel-molybdenum alloys with weight percentages of 82/18, 85/15, 88/12, 91/9, and 94/6 and natural nickel Ni100, (ii) nickel-vanadium NiV93/7, (iii) copper, and (iv) deuterated polystyrene (dPS). For the different samples, storage-time constants up to $\ensuremath{\sim}460\phantom{\rule{0.16em}{0ex}}\mathrm{s}$ were obtained at room temperature. The corresponding loss parameters for ultracold neutrons, $\ensuremath{\eta}$, varied between $1.0\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}4}$ and $2.2\ifmmode\t…

research product

MC calculations for the nEDM experiment systematics

International audience; The nEDM experiment hosted at the Paul Scherrer Institute is the flagship project at the new ultracold neutron facility. Estimations of systematic effects for the determination of the neutron electric dipole moment play an important role in this project. Experimental studies are supported by Monte Carlo simulations using the MCUCN code. Here we briefly present first results on the experimental benchmark of the model, and on the evaluation of the storage time dependence of the centre of mass of UCN in the nEDM precession chamber. Such time dependence calculations will serve as consistency tests for future measurements involving field gradient corrections of the Ramsey…

research product

Test of Lorentz invariance with spin precession of ultracold neutrons

A clock comparison experiment, analyzing the ratio of spin precession frequencies of stored ultracold neutrons and $^{199}$Hg atoms is reported. %57 No daily variation of this ratio could be found, from which is set an upper limit on the Lorentz invariance violating cosmic anisotropy field $b_{\bot} < 2 \times 10^{-20} {\rm eV}$ (95% C.L.). This is the first limit for the free neutron. This result is also interpreted as a direct limit on the gravitational dipole moment of the neutron $|g_n| < 0.3 $eV/$c^2$ m from a spin-dependent interaction with the Sun. Analyzing the gravitational interaction with the Earth, based on previous data, yields a more stringent limit $|g_n| < 3 \times …

research product

Testing isotropy of the universe using the Ramsey resonance technique on ultracold neutron spins

Physics at the Planck scale could be revealed by looking for tiny violations of fundamental symmetries in low energy experiments. In 2008, a sensitive test of the isotropy of the Universe using has been performed with stored ultracold neutrons (UCN), this is the first clock-comparison experiment performed with free neutrons. During several days we monitored the Larmor frequency of neutron spins in a weak magnetic field using the Ramsey resonance technique. An non-zero cosmic axial field, violating rotational symmetry, would induce a daily variation of the precession frequency. Our null result constitutes one of the most stringent tests of Lorentz invariance to date.

research product

Towards a new measurement of the neutron electric dipole moment

International audience; The effort towards a new measurement of the neutron electric dipole moment (nEDM) at the Paul Scherrer Institut's (PSI) new high intensity source of ultracold neutrons (UCN) is described. The experimental technique relies on Ramsey's method of separated oscillatory fields, using UCN in vacuum with the apparatus at ambient temperature. In the first phase, R&D towards the upgrade of the RAL/Sussex/ILL apparatus is being performed at the Institut Laue-Langevin (ILL). In the second phase the apparatus, moved from ILL to PSI, will allow an improvement in experimental sensitivity by a factor of 5. In the third phase, a new spectrometer should gain another order of magnitud…

research product

Observation of Gravitationally Induced Vertical Striation of Polarized Ultracold Neutrons by Spin-Echo Spectroscopy.

We describe a spin-echo method for ultracold neutrons (UCNs) confined in a precession chamber and exposed to a $|B_0|=1~\text{\mu T}$ magnetic field. We have demonstrated that the analysis of UCN spin-echo resonance signals in combination with knowledge of the ambient magnetic field provides an excellent method by which to reconstruct the energy spectrum of a confined ensemble of neutrons. The method takes advantage of the relative dephasing of spins arising from a gravitationally induced striation of stored UCN of different energies, and also permits an improved determination of the vertical magnetic-field gradient with an exceptional accuracy of $1.1~\text{pT/cm}$. This novel combination …

research product

Additional results from the first dedicated search for neutron–mirror neutron oscillations

International audience; The existence of a mirror world holding a copy of our ordinary particle spectrum could lead to oscillations between the neutron (n) and its mirror partner (n′). Such oscillations could manifest themselves in storage experiments with ultracold neutrons whose storage lifetime would depend on the applied magnetic field. Here, extended details and measurements from the first dedicated experimental search for nn′ oscillations published in [G. Ban, K. Bodek, M. Daum, R. Henneck, S. Heule, M. Kasprzak, N. Khomutov, K. Kirch, S. Kistryn, A. Knecht, P. Knowles, M. Kuźniak, T. Lefort, A. Mtchedlishvili, O. Naviliat-Cuncic, C. Plonka, G. Quéméner, M. Rebetez, D. Rebreyend, S. R…

research product

A search for neutron to mirror-neutron oscillations using the nEDM apparatus at PSI

It has been proposed that there could be a mirror copy of the standard model particles, restoring the parity symmetry in the weak interaction on the global level. Oscillations between a neutral standard model particle, such as the neutron, and its mirror counterpart could potentially answer various standing issues in physics today. Astrophysical studies and terrestrial experiments led by ultracold neutron storage measurements have investigated neutron to mirror-neutron oscillations and imposed constraints on the theoretical parameters. Recently, further analysis of these ultracold neutron storage experiments has yielded statistically significant anomalous signals that may be interpreted as …

research product