Synthesis and characterization of modified sulfonated chitosan for beryllium recovery
Abstract A new adsorbent, sulfated crosslinked chitosan (SGCH), has been synthesized for the effective extraction of beryllium ions from their aqueous solutions. In recent times, beryllium extraction has been of great importance because beryllium can be used in many applications such as in nuclear reactor, heat shields, high-technology ceramics, alloys and electronic heat sinks. SGCH has been synthesized by two successive phases. The first is the conversion of chitosan (CH) into non-soluble cross-linked chitosan (GCH) through the interaction between chitosan and glutaraldehyde. The second step is the formation of functional sulfonate groups onto the adsorbent material through the interactio…
Chitosan Functionalized with Carboxyl Groups as a Recyclable Biomaterial for the Adsorption of Cu (II) and Zn (II) Ions in Aqueous Media
The modification of chitosan represents a challenging task in obtaining biopolymeric materials with enhanced removal capacity for heavy metals. In the present work, the adsorption characteristics of chitosan modified with carboxyl groups (CTS-CAA) towards copper (II) and zinc (II) ions have been tested. The efficacy of the synthesis of CTS-CAA has been evaluated by studying various properties of the modified chitosan. Specifically, the functionalized chitosan has been characterized by using several techniques, including thermal analyses (differential scanning calorimetry and thermogravimetry), spectroscopies (FT-IR, XRD), elemental analysis, and scanning electron microscopy. The kinetics an…