0000000000004490

AUTHOR

Andreas Dax

Laser spectroscopy of the ground-state hyperfine structure in H-like and Li-like bismuth

The LIBELLE experiment performed at the experimental storage ring (ESR) at the GSI Helmholtz Center in Darmstadt aims for the determination of the ground state hyperfine (HFS) transitions and lifetimes in hydrogen-like (209Bi82+) and lithium-like (209Bi80+) bismuth. The study of HFS transitions in highly charged ions enables precision tests of QED in extreme electric and magnetic fields otherwise not attainable in laboratory experiments. While the HFS transition in H-like bismuth was already observed in earlier experiments at the ESR, the LIBELLE experiment succeeded for the first time to measure the HFS transition in Li-like bismuth in a laser spectroscopy experiment.

research product

Lifetimes and g-factors of the HFS states in H-like and Li-like bismuth

The LIBELLE experiment performed at the experimental storage ring (ESR) at the GSI Helmholtz Center for Heavy Ion Research in Darmstadt, Germany, has successfully determined the ground state hyperfine (HFS) splittings in hydrogen-like ($^{209}\rm{Bi}^{82+}$) and lithium-like ($^{209}\rm{Bi}^{80+}$) bismuth. The study of HFS transitions in highly charged ions enables precision tests of QED in extreme electric and magnetic fields otherwise not attainable in laboratory experiments. Besides the transition wavelengths the time resolved detection of fluorescence photons following the excitation of the ions by a pulsed laser system also allows to extract lifetimes of the upper HFS levels and g-fac…

research product

An improved value for the hyperfine splitting of hydrogen-like209Bi82+

We report an improved measurement of the hyperfine splitting in hydrogen-like bismuth (209Bi82+) at the experimental storage ring ESR at GSI by laser spectroscopy on a coasting beam. Accuracy was improved by about an order of magnitude compared to the first observation in 1994. The most important improvement is an in situ high voltage measurement at the electron cooler (EC) platform with an accuracy at the 10 ppm level. Furthermore, the space charge effect of the EC current on the ion velocity was determined with two independent techniques that provided consistent results. The result of nm provides an important reference value for experiments testing bound-state quantum electrodynamics in t…

research product

Hyperfine transition in209Bi80+—one step forward

The hyperfine transitions in lithium-like and hydrogen-like bismuth were remeasured by direct laser spectroscopy at the experimental storage ring. For this we have now employed a voltage divider which enabled us to monitor the electron cooler voltage in situ. This will improve the experimental accuracy by about one order of magnitude with respect to our previous measurement using the same technique.

research product

Isotope-shift measurements of stable and short-lived lithium isotopes for nuclear-charge-radii determination

Changes in the mean-square nuclear charge radii along the lithium isotopic chain were determined using a combination of precise isotope shift measurements and theoretical atomic structure calculations. Nuclear charge radii of light elements are of high interest due to the appearance of the nuclear halo phenomenon in this region of the nuclear chart. During the past years we have developed a new laser spectroscopic approach to determine the charge radii of lithium isotopes which combines high sensitivity, speed, and accuracy to measure the extremely small field shift of an 8 ms lifetime isotope with production rates on the order of only 10,000 atoms/s. The method was applied to all bound iso…

research product

Observation of the hyperfine transition in lithium-like bismuthBi20980+: Towards a test of QED in strong magnetic fields

We performed a laser spectroscopic determination of the $2s$ hyperfine splitting (HFS) of Li-like ${}^{209}{\text{Bi}}^{80+}$ and repeated the measurement of the $1s$ HFS of H-like ${}^{209}{\text{Bi}}^{82+}$. Both ion species were subsequently stored in the Experimental Storage Ring at the GSI Helmholtzzentrum f\"ur Schwerionenforschung Darmstadt and cooled with an electron cooler at a velocity of $\ensuremath{\approx}0.71\phantom{\rule{0.16em}{0ex}}c$. Pulsed laser excitation of the $M1$ hyperfine transition was performed in anticollinear and collinear geometry for ${\text{Bi}}^{82+}$ and ${\text{Bi}}^{80+}$, respectively, and observed by fluorescence detection. We obtain $\ensuremath{\De…

research product

Laser spectroscopy measurement of the 2s-hyperfine splitting in lithium-like bismuth

We have recently reported on the first direct measurement of the $2s$ hyperfine transition in lithium-like bismuth (209Bi80+) at the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany. Combined with a new measurement of the $1s$ hyperfine splitting (HFS) in hydrogen-like (209Bi82+) the so-called specific difference ${\rm{\Delta }}^{\prime} E=-61.37(36)$ meV could be determined and was found to be in good agreement with its prediction from strong-field bound-state quantum electrodynamics. Here we report on additional investigations performed to estimate systematic uncertainties of these results and on details of the experimental setup. We show that the dominating uncertainty a…

research product

First observation of the ground-state hyperfine transition in 209Bi80+

The long sought after ground-state hyperfine transition in lithium-like bismuth 209Bi80+ was observed for the first time using laser spectroscopy on relativistic ions in the experimental storage ring at the GSI Helmholtz Centre in Darmstadt. Combined with the transition in the corresponding hydrogen-like ion 209Bi82+, it will allow extraction of the specific difference between the two transitions that is unaffected by the magnetic moment distribution in the nucleus and can therefore provide a better test of bound-state QED in extremely strong magnetic fields.

research product

High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED

Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209Bi82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron–nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209Bi82+,80+ with a precision that is improve…

research product