0000000000004858

AUTHOR

Filippo Giannazzo

0000-0002-0074-0469

Effect of high temperature annealing (T > 1650 °C) on the morphological and electrical properties of p-type implanted 4H-SiC layers

This work reports on the effect of high temperature annealing on the electrical properties of p-type implanted 4H-SiC. Ion implantations of Aluminum (Al) at different energies (30-200 keV) were carried out to achieve 300 nm thick acceptor box profiles with a concentration of about 10(20) at/cm(3). The implanted samples were annealed at high temperatures (1675-1825 degrees C). Morphological analyses of the annealed samples revealed only a slight increase of the surface roughness RMS up to 1775 degrees C, while this increase becomes more significant at 1825 degrees C (RMS = 1.2 nm). Room temperature Hall measurements resulted in a hole concentration in the range 0.65-1.34 x 10(18)/cm(3) and m…

research product

Micro-Raman characterization of graphene grown on SiC(000-1)

Graphene (Gr) was grown on the C face of 4H-SiC under optimized conditions (high annealing temperatures ranging from 1850 to 1950°C in Ar ambient at 900 mbar) in order to achieve few layers of Gr coverage. Several microscopy techniques, including optical microscopy (OM), ?Raman spectroscopy, atomic force microscopy (AFM) and atomic resolution scanning transmission electron microscopy (STEM) have been used to extensively characterize the lateral uniformity of the as-grown layers at different temperatures. ?Raman analysis provided information on the variation of the number of layers, of the stacking-type, doping and strain.

research product

Substrate and atmosphere influence on oxygen p-doped graphene

Abstract The mechanisms responsible for p-type doping of substrate supported monolayer graphene (Gr) by thermal treatments in oxygen ambient have been investigated by micro-Raman spectroscopy, atomic force microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS), considering commonly employed dielectric substrates, such as SiO 2 and Al 2 O 3 thin films grown on Si. While a high p-type doping (∼10 13  cm −2 ) is observed for Gr on SiO 2 , no significant doping is found for Gr samples on the Al 2 O 3 substrate, suggesting a key role of the Gr/SiO 2 interface states in the trapping of oxygen responsible for the Gr p-type doping. Furthermore, we investigated the doping stability of Gr on SiO…

research product

Nanoscale inhomogeneity of the Schottky barrier and resistivity inMoS2multilayers

Conductive atomic force microscopy (CAFM) is employed to investigate the current injection from a nanometric contact (a Pt coated tip) to the surface of ${\text{MoS}}_{2}$ thin films. The analysis of local current-voltage characteristics on a large array of tip positions provides high spatial resolution information on the lateral homogeneity of the $\mathrm{tip}/{\text{MoS}}_{2}$ Schottky barrier ${\mathrm{\ensuremath{\Phi}}}_{B}$ and ideality factor $n$, and on the local resistivity ${\ensuremath{\rho}}_{\text{loc}}$ of the ${\text{MoS}}_{2}$ region under the tip. Here, ${\mathrm{\ensuremath{\Phi}}}_{B}=300\ifmmode\pm\else\textpm\fi{}24\phantom{\rule{0.28em}{0ex}}\text{meV}, n=1.60\ifmmode…

research product

Nanoscale structural and electrical properties of graphene grown on AlGaN by catalyst-free chemical vapor deposition

The integration of graphene (Gr) with nitride semiconductors is highly interesting for applications in high-power/high-frequency electronics and optoelectronics. In this work, we demonstrated the direct growth of Gr on Al0.5Ga0.5N/sapphire templates by propane (C3H8) chemical vapor deposition (CVD) at temperature of 1350{\deg}C. After optimization of the C3H8 flow rate, a uniform and conformal Gr coverage was achieved, which proved beneficial to prevent degradation of AlGaN morphology. X-ray photoemission spectroscopy (XPS) revealed Ga loss and partial oxidation of Al in the near-surface AlGaN region. Such chemical modification of a 2 nm thick AlGaN surface region was confirmed by cross-sec…

research product

In-situ monitoring by Raman spectroscopy of the thermal doping of graphene and MoS2 in O-2-controlled atmosphere

The effects of temperature and atmosphere (air and O2) on the doping of monolayers of graphene (Gr) on SiO2 and Si substrates, and on the doping of MoS2 multilayer flakes transferred on the same substrates have been investigated. The investigations were carried out by in situ micro-Raman spectroscopy during thermal treatments up to 430 °C, and by atomic force microscopy (AFM). The spectral positions of the G and 2D Raman bands of Gr undergo only minor changes during treatment, while their amplitude and full width at half maximum (FWHM) vary as a function of the temperature and the used atmosphere. The thermal treatments in oxygen atmosphere show, in addition to a thermal effect, an effect a…

research product

Barrier inhomogeneity in vertical Schottky diodes on free standing gallium nitride

Abstract In this paper, the electrical behavior of a Ni/Au Schottky barrier on free standing GaN has been studied employing a variety of techniques and correlated with the material and interface quality. The temperature dependence of the ideality factor (n) and of the Schottky barrier height (ΦB) revealed a spatial inhomogeneity of the barrier. This behavior has been described by means of the Tung's model on inhomogeneous Schottky barriers. The origin of the barrier inhomogeneity can be likely associated to the surface quality of the GaN epilayer or to microstructure of the Ni/GaN interface.

research product

Self-organization and nanostructural control in thin film heterojunctions.

In spite of more than two-decades of studies of molecular self-assembly, the achievement of low cost, easy-to-implement and multi-parameter bottom-up approaches to address the supramolecular morphology in three-dimensional (3D) systems is still missing. In the particular case of molecular thin films, the 3D nanoscale morphology and function are crucial for both fundamental and applied research. Here we show how it is possible to tune the 3D film structure (domain size, branching, etc.) of thin film heterojunctions with nanoscale accuracy together with the modulation of their optoelectronic properties by employing an easy two-step approach. At first we prepared multi-planar heterojunctions w…

research product

Metal/Semiconductor Barrier Properties of Non-Recessed Ti/Al/Ti and Ta/Al/Ta Ohmic Contacts on AlGaN/GaN Heterostructures

This paper compares the metal/semiconductor barrier height properties of non-recessed Ti/Al/Ti and Ta/Al/Ta contacts on AlGaN/GaN heterostructures. Both contacts exhibited a rectifying behavior after deposition and after annealing at temperatures up to 550 &deg

research product

Direct atomic layer deposition of ultrathin aluminium oxide on monolayer $MoS_2$ exfoliated on gold: the role of the substrate

In this paper we demonstrated the thermal Atomic Layer Deposition (ALD) growth at 250 {\deg}C of highly homogeneous and ultra-thin ($\approx$ 3.6 nm) $Al_2O_3$ films with excellent insulating properties directly onto a monolayer (1L) $MoS_2$ membrane exfoliated on gold. Differently than in the case of 1L $MoS_2$ supported by a common insulating substrate ($Al_2O_3/Si$), a better nucleation process of the high-k film was observed on the 1L $MoS_2/Au$ system since the ALD early stages. Atomic force microscopy analyses showed a $\approx 50\%$ $Al_2O_3$ surface coverage just after 10 ALD cycles, its increasing up to $>90\%$ (after 40 cycles), and an uniform $\approx$ 3.6 nm film, after 80 cycle…

research product

Graphene‐SiO2 Interaction from Composites to Doping

An overview of the interaction between monolayer graphene and SiO2 dielectric substrate is reported focusing on the effect this latter has on doping and strain induced by thermal treatments in controlled atmosphere. The disentanglement of strain and doping is highlighted and the comparison with another dielectric substrate of Al2O3 evidences the critical role that the substrate has in the electronic properties of graphene. The reported results pave the way for microelectronic devices based on graphene on dielectrics and for Fermi level tuning in composites of graphene and nanoparticles.

research product

Current injection from metal to MoS2 probed at nanoscale by conductive atomic force microscopy

Contacts with MoS2 are currently the object of many investigations, since current injection through metal/MoS2 interfaces represents one of the limiting factors to the performance of MoS2 thin film transistors. In this paper, we employed conductive atomic force microscopy (CAFM) to investigate the current injection mechanisms from a nanometric contact (a Pt coated tip) to the surface of MoS2 thin films exfoliated on SiO2. The analysis of local current-voltage (I-V) characteristics on a large array of tip positions provided high spatial resolution information on the lateral homogeneity of the tip/MoS2 Schottky barrier Phi(B) and of the ideality factor n. From the histograms of the measured P…

research product

Electron Irradiation Effects on Single‐Layer MoS 2 Obtained by Gold‐Assisted Exfoliation

International audience; Mechanical exfoliation assisted by gold is applied to obtain good quality large lateral size single-layer MoS2. The effects of 2.5 MeV electron irradiation are investigated at room temperature on structural and electronic features by Raman and microluminescence spectroscopy. The exciton recombination emission in the direct bandgap of single-layer MoS2 is affected during irradiation starting from the minimum explored dose of 1 kGy. At higher doses, Raman bands show no relevant modifications whereas the exciton emission is quenched, suggesting that irradiation-induced point defects affect exciton dynamics.

research product

Substrate impact on the thickness dependence of vibrational and optical properties of large area $MoS_2$ produced by gold-assisted exfoliation

The gold-assisted exfoliation is a very effective method to produce large-area ($cm^2$-scale) membranes of molybdenum disulfide ($MoS_2$) for electronics. However, the strong $MoS_2/Au$ interaction, beneficial for the exfoliation process, has a strong impact on the vibrational and light emission properties of $MoS_2$. Here, we report an atomic force microscopy (AFM), micro-Raman ($\mu-R$) and micro-Photoluminescence ($\mu-PL$) investigation of $MoS_2$ with variable thickness exfoliated on Au and subsequently transferred on an $Al_2O_3/Si$ substrate. The $E_{2g}$ - $A_{1g}$ vibrational modes separation $\Delta\mu$ (typically used to estimate $MoS_2$ thickness) exhibits an anomalous large val…

research product

Seed‐Layer‐Free Atomic Layer Deposition of Highly Uniform Al 2 O 3 Thin Films onto Monolayer Epitaxial Graphene on Silicon Carbide

Atomic layer deposition (ALD) is the method of choice to obtain uniform insulating films on graphene for device applications. Owing to the lack of out-of-plane bonds in the sp(2) lattice of graphene, nucleation of ALD layers is typically promoted by functionalization treatments or predeposition of a seed layer, which, in turn, can adversely affect graphene electrical properties. Hence, ALD of dielectrics on graphene without prefunctionalization and seed layers would be highly desirable. In this work, uniform Al2O3 films are obtained by seed-layer-free thermal ALD at 250 degrees C on highly homogeneous monolayer (1L) epitaxial graphene (EG) (amp;gt;98% 1L coverage) grown on on-axis 4H-SiC(00…

research product

Temperature and time dependent electron trapping in Al2O3 thin films onto AlGaN/GaN heterostructures

In this article, the charge trapping phenomena in Al2O3 thin films grown by atomic layer deposition (ALD) on AlGaN/GaN heterostructures have been studied by time-dependent capacitance–voltage (C-V) measurements as a function of temperature. In particular, monitoring the transient of the capacitance enabled us to estimate the maximum depth of the insulating layer interested by the negative charge trapping effect under our bias stress conditions and to determine a charge traps density in the bulk Al2O3 in the order of 3 × 1019 cm−3. A temperature dependent C-V analysis up to 150 °C demonstrated the presence of two competitive mechanisms that rule the electron capture and emission in the Al2O3…

research product

Effect of air on oxygen p-doped graphene on SiO2

Stability in ambient air or in vacuum-controlled atmosphere of molecular oxygen-induced p-type doping of graphene monolayer on SiO2 substrate on Si is investigated by micro-Raman spectroscopy and atomic force microscopy (AFM). The Raman 2D and G bands spectral positions and amplitude ratio are affected by the permanence in air atmosphere in a time scale of months whereas the vacuum safely maintains the doping effects determined through Raman bands. No morphological effects are induced by the doping and post-doping treatments. A reactivity of ambient molecular gas with stably trapped oxygen is suggested to induce the doping modification. (C) 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

research product

Influence of oxide substrates on monolayer graphene doping process by thermal treatments in oxygen

Abstract The structural and the electronic properties of monolayer graphene made by chemical vapor deposition and transferred on various oxide substrates ( SiO 2 , Al 2 O 3 , and HfO 2 ) are investigated by Raman Spectroscopy and Atomic Force Microscopy in order to highlight the influence of the substrate on the features of p-doping obtained by O 2 thermal treatments. By varing the treatment temperature up to 400 °C, the distribution of the reaction sites of the substrates is evaluated. Their total concentration and the consequent highest doping available is determined and it is shown that this latter is linked to the water affinity of the substrate. Finally, by varing the exposure time to …

research product

Ambipolar MoS2 Transistors by Nanoscale Tailoring of Schottky Barrier Using Oxygen Plasma Functionalization

One of the main challenges to exploit molybdenum disulfide (MoS2) potentialities for the next-generation complementary metal oxide semiconductor (CMOS) technology is the realization of p-type or ambipolar field-effect transistors (FETs). Hole transport in MoS2 FETs is typically hampered by the high Schottky barrier height (SBH) for holes at source/drain contacts, due to the Fermi level pinning close to the conduction band. In this work, we show that the SBH of multilayer MoS2 surface can be tailored at nanoscale using soft O-2 plasma treatments. The morphological, chemical, and electrical modifications of MoS2 surface under different plasma conditions were investigated by several microscopi…

research product

Photoinduced charge transfer from Carbon Dots to Graphene in solid composite

Abstract The emission in solid phase of Carbon Dots (CDs) deposited by drop-casting technique is investigated by means of micro-photoluminescence. Graphene and SiO2 are used as substrates, and the influence of their different nature – conductive or insulating – on the emission of CDs is highlighed. In particular, a systematic loss of efficiency in the emission of CDs on graphene is found, suggesting a CD-graphene interaction possibly due to a photoinduced electron transfer between the surface states of CDs and the conduction band of graphene. Finally, thanks to the negligible influence on CDs emission, SiO2 substrate is used as support to perform thermal processing of CDs in solid phase, sh…

research product

Highly Homogeneous 2D/3D Heterojunction Diodes by Pulsed Laser Deposition of MoS2 on Ion Implantation Doped 4H-SiC

In this paper, 2D/3D heterojunction diodes have been fabricated by pulsed laser deposition (PLD) of MoS2 on 4H-SiC(0001) surfaces with different doping levels, i.e., n− epitaxial doping (≈1016 cm−3) and n+ ion implantation doping (>1019 cm−3). After assessing the excellent thickness uniformity (≈3L-MoS2) and conformal coverage of the PLD-grown films by Raman mapping and transmission electron microscopy, the current injection across the heterojunctions is investigated by temperature-dependent current–voltage characterization of the diodes and by nanoscale current mapping with conductive atomic force microscopy. A wide tunability of the transport properties is shown by the SiC surface dopi…

research product

Carbon Dots Dispersed on Graphene/SiO2/Si: A Morphological Study

Low-dimensional carbon materials occupy a relevant role in the field of nanotechnology. Herein, the authors report a study conducted by atomic force microscopy and Raman spectroscopy on the deposition of carbon dots onto graphene surfaces. The study aims at understanding if and how the morphology and the microstructure of chemical vapor deposited graphene on Si/SiO2 may change due to the interaction with the carbon dots. Potential alteration in the graphene's electrical properties might be detrimental for optoelectronic applications. The deposition of carbon dots dispersed in water and ethanol solvents are explored to investigate the effect of solvents with different fluidic properties. The…

research product

Multiscale Investigation of the Structural, Electrical and Photoluminescence Properties of MoS2 Obtained by MoO3 Sulfurization

In this paper, we report a multiscale investigation of the compositional, morphological, structural, electrical, and optical emission properties of 2H-MoS2 obtained by sulfurization at 800 °C of very thin MoO3 films (with thickness ranging from ~2.8 nm to ~4.2 nm) on a SiO2/Si substrate. XPS analyses confirmed that the sulfurization was very effective in the reduction of the oxide to MoS2, with only a small percentage of residual MoO3 present in the final film. High-resolution TEM/STEM analyses revealed the formation of few (i.e., 2–3 layers) of MoS2 nearly aligned with the SiO2 surface in the case of the thinnest (~2.8 nm) MoO3 film, whereas multilayers of MoS2 partially standing up with r…

research product

Graphene p-Type Doping and Stability by Thermal Treatments in Molecular Oxygen Controlled Atmosphere

Doping and stability of monolayer low defect content graphene transferred on a silicon dioxide substrate on silicon are investigated by micro-Raman spectroscopy and atomic force microscopy (AFM) during thermal treatments in oxygen and vacuum controlled atmosphere. The exposure to molecular oxygen induces graphene changes as evidenced by a blue-shift of the G and 2D Raman bands, together with the decrease of I2D/IG intensity ratio, which are consistent with a high p-type doping (∼1013 cm-2) of graphene. The successive thermal treatment in vacuum does not affect the induced doping showing this latter stability. By investigating the temperature range 140-350 °C and the process time evolution, …

research product

Impact of contact resistance on the electrical properties of MoS2 transistors at practical operating temperatures

Molybdenum disulphide (MoS2) is currently regarded as a promising material for the next generation of electronic and optoelectronic devices. However, several issues need to be addressed to fully exploit its potential for field effect transistor (FET) applications. In this context, the contact resistance, RC, associated with the Schottky barrier between source/drain metals and MoS2 currently represents one of the main limiting factors for suitable device performance. Furthermore, to gain a deeper understanding of MoS2 FETs under practical operating conditions, it is necessary to investigate the temperature dependence of the main electrical parameters, such as the field effect mobility (μ) an…

research product

Dynamic modification of Fermi energy in single-layer graphene by photoinduced electron transfer from carbon dots

Graphene (Gr)&mdash

research product

Ohmic contacts on n-type and p-type cubic silicon carbide (3C-SiC) grown on silicon

This paper is a report on Ohmic contacts on n-type and p-type type cubic silicon carbide (3C-SiC) layers grown on silicon substrates. In particular, the morphological, electrical and structural properties of annealed Ni and Ti/Al/Ni contacts has been studied employing several characterization techniques. Ni films annealed at 950 degrees C form Ohmic contacts on moderately n-type doped 3C-SiC (N-D similar to 1 x 10(17) cm(-3)), with a specific contact resistance of 3.7 x 10(-3) Omega cm(2). The main phase formed upon annealing in this contact was nickel silicide (Ni2Si), with randomly dispersed carbon in the reacted layer. In the case of a p-type 3C-SiC with a high doping level (N-A similar …

research product

Aluminum oxide nucleation in the early stages of atomic layer deposition on epitaxial graphene

In this work, the nucleation and growth mechanism of aluminum oxide (Al2O3) in the early stages of the direct atomic layer deposition (ALD) on monolayer epitaxial graphene (EG) on silicon carbide (4H-SiC) has been investigated by atomic force microscopy (AFM) and Raman spectroscopy. Contrary to what is typically observed for other types of graphene, a large and uniform density of nucleation sites was observed in the case of EG and ascribed to the presence of the buffer layer at EG/SiC interface. The deposition process was characterized by Al2O3 island growth in the very early stages, followed by the formation of a continuous Al2O3 film (2.4 nm thick) after only 40 ALD cycles due to the isla…

research product

Monolayer graphene doping and strain dynamics induced by thermal treatments in controlled atmosphere

Time dynamics of doping and strain induced in single layer graphene by thermal treatments up to 300 degrees C in vacuum, nitrogen, carbon dioxide and oxygen controlled atmosphere are deeply studied by Raman spectroscopy and they are compared with its morphological evolution investigated by Atomic Force Microscopy. The reaction dynamics in oxygen treatments is determined down to a time scale of few minutes as well as that of dedoping process made by water vapor treatment. The interplay of strain modification and doping effects is separated. The strain is clarified to be strongly influenced by the cooling time. The doping removal is dominated by the water vapor, showing that the concentration…

research product

Interfacial disorder of graphene grown at high temperatures on 4H-SiC(000-1)

This paper presents an investigation of the morphological and structural properties of graphene (Gr) grown on SiC(000-1) by thermal treatments at high temperatures (from 1850 to 1950 °C) in Ar at atmospheric pressure. Atomic force microscopy and micro-Raman spectroscopy showed that the grown Gr films are laterally inhomogeneous in the number of layers, and that regions with different stacking-type (coupled or decoupled Gr films) can coexist in the same sample. Scanning transmission electron microscopy and electron energy loss spectroscopy shoed that a nm-thick C-Si-O amorphous layer is present at the interface between Gr and SiC. Basing on these structural results, the mechanisms of Gr grow…

research product

Ohmic Contacts on p-Type Al-Implanted 4H-SiC Layers after Different Post-Implantation Annealings

This paper reports on the electrical activation and Ohmic contact properties on p-type Al-implanted silicon carbide (4H-SiC). In particular, the contacts were formed on 4H-SiC-implanted layers, subjected to three different post-implantation annealing processes, at 1675 &deg

research product