0000000000004938

AUTHOR

Aurelio Bonasera

0000-0003-3275-6809

Tackling Performance Challenges in Organic Photovoltaics: An Overview about Compatibilizers

Organic Photovoltaics (OPVs) based on Bulk Heterojunction (BHJ) blends are a mature technology. Having started their intensive development two decades ago, their low cost, processability and flexibility rapidly funneled the interest of the scientific community, searching for new solutions to expand solar photovoltaics market and promote sustainable development. However, their robust implementation is hampered by some issues, concerning the choice of the donor/acceptor materials, the device thermal/photo-stability, and, last but not least, their morphology. Indeed, the morphological profile of BHJs has a strong impact over charge generation, collection, and recombination processes; control o…

research product

Shedding Light on Graphene Quantum Dots: Key Synthetic Strategies, Characterization Tools, and Cutting-Edge Applications

During the last 20 years, the scientific community has shown growing interest towards carbonaceous nanomaterials due to their appealing mechanical, thermal, and optical features, depending on the specific nanoforms. Among these, graphene quantum dots (GQDs) recently emerged as one of the most promising nanomaterials due to their outstanding electrical properties, chemical stability, and intense and tunable photoluminescence, as it is witnessed by a booming number of reported applications, ranging from the biological field to the photovoltaic market. To date, a plethora of synthetic protocols have been investigated to modulate the portfolio of features that GQDs possess and to facilitate the…

research product

N,N′-Disubstituted Indigos as Readily Available Red-Light Photoswitches with Tunable Thermal Half-Lives

Some rare indigo derivatives have been known for a long time to be photochromic upon irradiation with red light, which should be advantageous for many applications. However, the absence of strategies to tune their thermal half-lives by modular molecular design as well as the lack of proper synthetic methods to prepare a variety of such molecules from the parent indigo dye have so far precluded their use. In this work, several synthetic protocols for N-functionalization have been developed, and a variety of N-alkyl and N-aryl indigo derivatives have been prepared. By installation of electron-withdrawing substituents on the N-aryl moieties, the thermal stability of the Z-isomers could be enha…

research product

Artificial Biosystems by Printing Biology

The continuous progress of printing technologies over the past 20 years has fueled the development of a plethora of applications in materials sciences, flexible electronics, and biotechnologies. More recently, printing methodologies have started up to explore the world of Artificial Biology, offering new paradigms in the direct assembly of Artificial Biosystems (small condensates, compartments, networks, tissues, and organs) by mimicking the result of the evolution of living systems and also by redesigning natural biological systems, taking inspiration from them. This recent progress is reported in terms of a new field here defined as Printing Biology, resulting from the intersection betwee…

research product

Lichtaktivierte Sensoren zur empfindlichen Amindetektion

Unsere neue, einfache und akkurate colorimetrische Methode basiert auf Diarylethenen (DAEs) zur schnellen Detektion einer grosen Vielfalt primarer und sekundarer Amine. Die Sensoren bestehen aus aldehyd- oder ketonsubstituierten Diarylethenen, die selektiv ausgehend vom geschlossenen Isomer eine amininduzierte Entfarbungsreaktion eingehen. Somit konnen diese Sensoren zum gewunschten Zeitpunkt durch Lichteinstrahlung aktiviert werden und erlauben eine Empfindlichkeit der Amindetektion bis hinab zu 10−6 m in Losung. Zusatzlich ermoglicht die Immobilisierung auf Papier den Nachweis biogener Amine wie Cadaverin in der Gasphase oberhalb eines Grenzwerts von 12 ppbv innerhalb von 30 Sekunden.

research product

Sensitive Assays by Nucleophile-Induced Rearrangement of Photoactivated Diarylethenes.

Upon light-induced isomerization, diarylethenes (DAEs) equipped with reactive aldehyde moieties rearrange selectively in the presence of amines, accompanied by decoloration. In a comprehensive study, the probe structure was optimized with regard to its inherent reactivity in the nucleophile-triggered rearrangement reaction. Detailed structure−reactivity relationships could be derived, in particular with regard to the type of integrated (het)aryl moieties as well as the location of the formyl residue, and the probes’ intrinsic reactivity with primary and secondary amines was optimized. Utilizing an ancillary base, the initially formed rearrangement product can engage in a subsequent catalyti…

research product

Gamma rays induced synthesis of graphene oxide/gold nanoparticle composites: structural and photothermal study

Gamma irradiation provides an alternative pathway to conventional gold nanoparticle synthesis because it is simple, fast, and economical. Here, we employed gamma irradiation at low doses (1–20 kGy) to obtain gold nanoparticles (Au NPs) anchored onto graphene oxide (GO) sheets. GO was selected as a suitable platform for the nucleation and growth of Au NPs because of its large surface area and good dispersibility in water due to the presence of polar oxygen-containing functional groups in its structure. Gamma irradiation at all the applied doses led to the reduction of chloroauric acid and the formation of evenly distributed Au NPs at the GO surface, simultaneously causing the reduction of GO…

research product

Modification of Nanocrystalline WO3 with a Dicationic Perylene Bisimide: Applications to Molecular Level Solar Water Splitting

[(N,N?-Bis(2-(trimethylammonium)ethylene) perylene 3,4,9,10-tetracarboxylic acid bisimide)(PF6)2] (1) was observed to spontaneously adsorb on nanocrystalline WO3 surfaces via aggregation/hydrophobic forces. Under visible irradiation (? > 435 nm), the excited state of 1 underwent oxidative quenching by electron injection (kinj > 108 s-1) to WO3, leaving a strongly positive hole (Eox ? 1.7 V vs SCE), which allows to drive demanding photo-oxidation reactions in photoelectrochemical cells (PECs). The casting of IrO2 nanoparticles (NPs), acting as water oxidation catalysts (WOCs) on the sensitized electrodes, led to a 4-fold enhancement in photoanodic current, consistent with hole transfer from …

research product

Reversible Modulation of Elasticity in Fluoroazobenzene-Containing Hydrogels Using Green and Blue Light.

Hydrogels are soft materials that have found multiple applications in biomedicine and represent a good platform for the introduction of molecular switches and synthetic machines into macromolecular networks. Tuning their mechanical properties reversibly with light is appealing for a variety of advanced applications and has been demonstrated in the past; however, their activation typically requires the use of UV light, which displays several drawbacks related to its damaging character and limited penetration in tissues and materials. This study circumvents this limitation by introducing all-visible ortho-fluoroazobenzene switches into a hydrophilic network, which, as a result, can be activat…

research product

Inkjet Printing Quasi-Miscible Droplets for Pseudo-Planar Organic Heterojunctions

research product

Semitransparent Perovskite Solar Cells for Building Integration and Tandem Photovoltaics: Design Strategies and Challenges

Over the past decade, halide perovskite systems have captured widespread attention among researchers since their exceptional photovoltaic (PV) performance was disclosed. The unique combination of optoelectronic properties and solution processability shown by these materials has enabled perovskite solar cells (PSCs) to reach efficiencies higher than 25% at low fabrication costs. Moreover, PSCs display enormous potential for modern unconventional PV applications, since they can be made lightweight, semitransparent (ST), and/or flexible by means of appropriate design strategies. In particular, by enabling transparency and high efficiency simultaneously, ST-PSCs hold great promise for future ve…

research product

The effect of annealing temperature and time on synthesis of graphene thin films by rapid thermal annealing

In this paper, we performed synthesis of graphene thin films by rapid thermal annealing (RTA) of thin nickel copper (Ni/Cu) layers deposited on spectroscopic graphite as a carbon source. Furthermore, we investigated the effect of annealing temperature and annealing time on formation and quality of synthesized graphene films. Raman spectroscopy study showed that annealing at lower temperatures results in formation of monolayer graphene films, while annealing at higher temperatures results in formation of multilayer graphene films. We used Raman mapping to determine the distribution of graphene sheets. Surface morphology of graphene thin films was investigated by atomic force microscopy and s…

research product

Light-Activated Sensitive Probes for Amine Detection

Our new, simple, and accurate colorimetric method is based on diarylethenes (DAEs) for the rapid detection of a wide range of primary and secondary amines. The probes consist of aldehyde- or ketone-substituted diarylethenes, which undergo an amine-induced decoloration reaction, selectively to give the ring-closed isomer. Thus, these probes can be activated at the desired moment by light irradiation, with a sensitivity that allows the detection of amines at concentrations as low as 10exp−6 M in solution. In addition, the practical immobilization of DAEs on paper makes it possible to detect biogenic amines, such as cadaverine, in the gas phase above a threshold of 12 ppbv within 30 seconds. P…

research product

Superhydrophobic TiO2/Fluorinated Polysiloxane Hybrid Coatings with Controlled Morphology for Solar Photocatalysis

Abstract Technological applications of polysiloxane coatings have been influenced by their intrinsic low surface energy, which increases their water repellence. Accurate control of composition and interfacial properties through the introduction of perfluorinated moieties further lowers the polysiloxane surface energy, while mixing with metal oxide nanoparticles enhances roughness, resulting in a great potential in the development of superhydrophobic materials for photocatalysis. Herein, a series of hydrophobic and superhydrophobic hybrid coatings were prepared by dehydrocoupling and hydrosilylation reactions of polymethylhydrosiloxane with 1H,1H,2H,2H‐perfluorooctyltriethoxysilane and 1,3-d…

research product

Chemical modification of carbon nanomaterials (SWCNTs, DWCNTs, MWCNTs and SWCNHs) with diphenyl dichalcogenides

Control over chemical functionalization is a crucial point in the field of nanotechnology. Herein, we present the covalent functionalization of several carbon nanoforms (single-walled carbon nanotubes, double-walled carbon nanotubes, multi-walled carbon nanotubes and carbon nanohorns) by means of diphenyl dichalcogenides. These ones show different reactivity to the nanomaterials and are able to modify their electronic properties depending on the electronegativity of the functionalizing heteroatom. Theoretical calculations were also performed to support the experimental results. All the modified structured nanocarbons were thoroughly characterized by TGA Raman, XPS, UV/Vis/nIR, IR and TEM te…

research product

Gamma irradiation of graphene quantum dots with ethylenediamine: Antioxidant for ion sensing

Due to the low consumption of chemicals, the absence of toxic residual side products, the procedure simplicity and time-saving aspects, gamma irradiation offers advantages over the classical chemical protocols. We successfully employed gamma irradiation in order to introduce N-atoms in Graphene Quantum Dots (GQDs). By irradiating GQDs water dispersions in the presence of isopropyl alcohol and ethylenediamine, at doses of 25, 50 and 200 kGy, we attached amino groups onto GQDs in a single synthetic step. At the same time, a chemical reduction is achieved, too. Selected conditions induced incorporation of N-atoms within GDQs atomic lattice (around 3 at%), at all applied doses. Additionally, th…

research product

Application of graphene quantum dots in heavy metals and pesticides detection

Graphene Quantum Dots (GQDs) were produced using electrochemical oxidation of graphite rods. Obtained GQDs were gamma-irradiated in the presence of the N atoms source, ethylenediamine. Both structural and morphological changes were investigated using UV-Vis, X-ray photoelectron and photoluminescence (PL) spectroscopy as well as atomic force microscopy. The ability of both types of dots to change PL intensity in the presence of pesticides such as malathion and glyphosate, as well as copper (II) ions was detected. These preliminary results indicated a high potential of produced GQDs to be applied as non-enzymatic PL sensors for the detection of selected pesticides and metal ions. 26th Interna…

research product

Modification of Structural and Luminescence Properties of Graphene Quantum Dots by Gamma Irradiation and Their Application in a Photodynamic Therapy

Herein, the ability of gamma irradiation to enhance the photoluminescence properties of graphene quantum dots (GQDs) was investigated. Different doses of gamma-irradiation were used on GQDs to examine the way in which their structure and optical properties can be affected. The photoluminescence quantum yield was increased six times for the GQDs irradiated with high doses compared to the nonirradiated material. Both photoluminescence lifetime and values of optical band gap were increased with the dose of applied gamma irradiation. In addition, the exploitation of the gamma-irradiated GQDs as photosensitizers was examined by monitoring the production of singlet oxygen under UV illumination. T…

research product

Gamma Irradiation as a Tool for Modification of Graphene Oxide-Silver Nanowires Composites GAMMA IRRADIATION AS A TOOL FOR MODIFICATION OF GRAPHENE OXIDE-SILVER NANOWIRES COMPOSITES

Graphene oxide (GO) was produced using the Hummers' method while silver nanowires (AgNWs) were obtained by polyol synthesis. Composite was produced by simple mixing of GO and AgNWs dispersions. The composite was produced in a form of free/standing films by vacuum filtration and exposed to gamma irradiation in an oxygen-free atmosphere. After irradiation, without any additional cleaning, the structure, morphology and electrical properties were investigated. Gamma irradiation was shown to be an efficient tool to induce a chemical reduction of GO, and it was able to improve the electrical conductivity of produced composites. Due to avoiding the usage of reagents and solvents, this method belon…

research product

Blue luminescent amino-functionalized graphene quantum dots as a responsive material for potential detection of metal ions and malathion

Large amounts of hazardous and toxic substances in the environment require non-toxic, cheap, easy, rapid, and sensitive methods for their detection. Blue luminescent graphene quantum dots (GQDs) were produced by electrochemical cleavage of graphite electrodes followed by gamma irradiation in the presence of ethylenediamine (EDA). Modified dots were able to detect metal ions (Co2+, Pd2+, Fe3+) due to photoluminescence quenching. The highest sensitivity was detected for the sample irradiated at a dose of 25 kGy. The limits of detection (LODs) were 1.79, 2.55, and 0.66 μmol L−1 for Co2+, Fe3+, and Pd2+, respectively. It was observed that GQDs irradiated at 200 kGy act as an ultra-sensitive tur…

research product

Modulating the luminance of organic light-emitting diodes via optical stimulation of a photochromic molecular monolayer at transparent oxide electrode

Nanoscale 12(9), 5444-5451 (2020). doi:10.1039/D0NR00724B

research product

Gamma-Ray-Induced Structural Transformation of GQDs towards the Improvement of Their Optical Properties, Monitoring of Selected Toxic Compounds, and Photo-Induced Effects on Bacterial Strains.

Structural modification of different carbon-based nanomaterials is often necessary to improve their morphology and optical properties, particularly the incorporation of N-atoms in graphene quantum dots (GQDs). Here, a clean, simple, one-step, and eco-friendly method for N-doping of GQDs using gamma irradiation is reported. GQDs were irradiated in the presence of the different ethylenediamine (EDA) amounts (1 g, 5 g, and 10 g) and the highest % of N was detected in the presence of 10 g. N-doped GQDs emitted strong, blue photoluminescence (PL). Photoluminescence quantum yield was increased from 1.45, as obtained for non-irradiated dots, to 7.24% for those irradiated in the presence of 1 g of …

research product

Supramolecular Design of Low-dimensional Carbon Nano-hybrids encoding a Polyoxometalate-bis-Pyrene Tweezer

A novel bis-pyrene tweezer anchored on a rigid polyoxometalate scaffold fosters a unique interplay of hydrophobic and electrostatic supramolecular interactions, to shape carbon nanostructures (CNSs)-based extended architectures.

research product

Light-controlled reversible modulation of frontier molecular orbital energy levels in trifluoromethylated diarylethenes

Among bistable photochromic molecules, diarylethenes (DAEs) possess the distinct feature that upon photoisomerization they undergo a large modulation of their π-electronic system, accompanied by a marked shift of the HOMO/LUMO energies and hence oxidation/reduction potentials. The electronic modulation can be utilized to remote-control charge- as well as energy-transfer processes and it can be transduced to functional entities adjacent to the DAE core, thereby regulating their properties. In order to exploit such photoswitchable systems it is important to precisely adjust the absolute position of their HOMO and LUMO levels and to maximize the extent of the photoinduced shifts of these energ…

research product

Unravelling Radicals Reactivity Towards Carbon Nanotubes Manipulation/Functionalization

Carbon Nanotubes (CNTs) chemistry is under constant evolution, as a consequence of the deep interest of the scientific community in finding new applications for these versatile materials. New and old synthetic protocols are used for improving the control of the functionalization degree of the final materials and for offering to scientists the possibility to fine-tune their final properties. In this Review, we focus the attention on radical reactions, a class of protocols characterized by small number of steps, different degrees of functionalization and enhanced solubility of the final modified CNTs, in the desired environment. The most well-known protocols are analysed providing some releva…

research product

Antioxidative and Photo-Induced Effects of Different Types of N-Doped Graphene Quantum Dots.

Due to the increasing number of bacterial infections and the development of resistivity toward antibiotics, new materials and approaches for treatments must be urgently developed. The production of new materials should be ecologically friendly considering overall pollution with chemicals and economically acceptable and accessible to the wide population. Thus, the possibility of using biocompatible graphene quantum dots (GQDs) as an agent in photodynamic therapy was studied. First, dots were obtained using electrochemical cutting of graphite. In only one synthetic step using gamma irradiation, GQDs were doped with N atoms without any reagent. Obtained dots showed blue photoluminescence, with…

research product

Facile synthesis of L-cysteine functionalized graphene quantum dots as a bioimaging and photosensitive agent

Nowadays, a larger number of aggressive and corrosive chemical reagents as well as toxic solvents are used to achieve structural modification and cleaning of the final products. These lead to the production of residual, waste chemicals, which are often reactive, cancerogenic, and toxic to the environment. This study shows a new approach to the modification of graphene quantum dots (GQDs) using gamma irradiation where the usage of reagents was avoided. We achieved the incorporation of S and N atoms in the GQD structure by selecting an aqueous solution of L-cysteine as an irradiation medium. GQDs were exposed to gamma-irradiation at doses of 25, 50 and 200 kGy. After irradiation, the optical,…

research product

Diarylethenes in Optically Switchable Organic Light-Emitting Diodes: Direct Investigation of the Reversible Charge Carrier Trapping Process

Advanced optical materials 10, (2021). doi:10.1002/adom.202101116

research product

Pseudo-Planar Organic Heterojunctions by Sequential Printing of Quasi-Miscible Inks

This work deals with the interfacial mixing mechanism of picoliter (pL)-scale droplets produced by sequential inkjet printing of organic-based inks onto ITO/PET surfaces at a moderately high Weber number (~101). Differently from solution dispensing processes at a high Bond number such as spin coating, the deposition by inkjet printing is strictly controlled by droplet velocity, ink viscosity, and surface tension. In particular, this study considers the interfacial mixing of droplets containing the most investigated donor/acceptor couple for organic solar cells, i.e., poly(3-hexylthiophene) (P3HT) and (6,6)-phenyl-C61-butyric acid methyl ester (PCBM), showing how low-viscosity and low-surfac…

research product

Boosting the Performance of One-Step Solution-Processed Perovskite Solar Cells Using a Natural Monoterpene Alcohol as a Green Solvent Additive

The perovskite film is the core of a perovskite solar cell (PSC), and its quality is crucial for the performance of such devices. The morphology, crystallinity, and surface coverage of the perovskite layer greatly affect the power conversion efficiency (PCE), hysteresis, and long-term stability of PSCs. The incorporation of appropriate solvent additives in the perovskite precursor solution is an effective strategy to control the film morphology and reduce the defects and grain boundaries. However, the commonly used solvent additives are environmentally harmful and highly toxic. In this work, α-terpineol (a nontoxic, eco-friendly, and low-cost monoterpene alcohol) is employed for the first t…

research product

Layered Double Hydroxides: A Toolbox for Chemistry and Biology

Layered double hydroxides (LDHs) are an emergent class of biocompatible inorganic lamellar nanomaterials that have attracted significant research interest owing to their high surface-to-volume ratio, the capability to accumulate specific molecules, and the timely release to targets. Their unique properties have been employed for applications in organic catalysis, photocatalysis, sensors, drug delivery, and cell biology. Given the widespread contemporary interest in these topics, time-to-time it urges to review the recent progresses. This review aims to summarize the most recent cutting-edge reports appearing in the last years. It firstly focuses on the application of LDHs as catalysts in re…

research product

Perylene Derivatives As Useful SERRS Reporters, Including Multiplexing Analysis

Five perylene bisimide (PBI) derivatives were designed and synthesized, on the basis of quantum-chemical calculations. The influence of halogen substituents on the shape and energy of the frontier orbitals and the Raman spectra were calculated, in the prospect use in surface-enhanced resonance Raman scattering (SERRS) studies. The corresponding experiments confirmed a very strong SERRS response in the presence of pristine (i.e., uncoated) gold nanoparticles. These spectra can be used for multiplexing measurements, namely measurements in which, by using a single laser excitation, one can recognize the simultaneous presence of several analytes.

research product

CCDC 1508362: Experimental Crystal Structure Determination

Related Article: Virginia Valderrey, Aurelio Bonasera, Sebastian Fredrich, Stefan Hecht|2017|Angew.Chem.,Int.Ed.|56|1914|doi:10.1002/anie.201609989

research product

CCDC 1518489: Experimental Crystal Structure Determination

Related Article: Martin Herder, Fabian Eisenreich, Aurelio Bonasera, Anna Grafl, Lutz Grubert, Michael Pätzel, Jutta Schwarz, Stefan Hecht|2017|Chem.-Eur.J.|23|3743|doi:10.1002/chem.201605511

research product

CCDC 1565864: Experimental Crystal Structure Determination

Related Article: Chung-Yang Huang, Aurelio Bonasera, Lachezar Hristov, Yves Garmshausen, Bernd M. Schmidt, Denis Jacquemin, Stefan Hecht|2017|J.Am.Chem.Soc.|139|15205|doi:10.1021/jacs.7b08726

research product