Thermo-Mechanical Analysis and Design Update of the Top Cap Region of the DEMO Water-Cooled Lithium Lead Central Outboard Blanket Segment
Within the framework of the EUROfusion research and development activities, the Water-Cooled Lithium Lead (WCLL) Breeding Blanket (BB) is one of the two candidates to be chosen as the driver blanket for the European DEMO nuclear fusion reactor. Hence, an intense research work is currently ongoing throughout the EU to develop a robust conceptual design able to fulfil the design requirements selected at the end of the DEMO pre-conceptual design phase. In this work, the thermo-mechanical analysis and the design update of the top cap (TC) region of the DEMO WCLL Central Out-board Blanket (COB) segment is presented. The scope of the work is to find a design solution of the WCLL COB TC region abl…
Preliminary thermal optimization and investigation of the overall structural behaviour of the EU-DEMO water-cooled lead lithium left outboard blanket segment
The conceptual design phase of the EU-DEMO reactor has been recently launched, with the aim of evolving the DEMO pre-conceptual layout towards a more robust and articulated geometric configuration able to cope with most of the design requirements and to show further margins for the passing of the current potential show-stoppers. Hence, the achievement of the conceptual design of the Water-Cooled Lead Lithium Breeding Blanket (WCLL BB) is one of the milestones the EUROfusion consortium aims to achieve in the close future. To this purpose, within the framework of the research activities promoted by EUROfusion, a research campaign has been launched at the University of Palermo, in close cooper…
The DEMO water-cooled lead–lithium breeding blanket: design status at the end of the pre-conceptual design phase
The Water-Cooled Lead–Lithium Breeding Blanket (WCLL BB) is one of the two blanket concept candidates to become the driver blanket of the EU-DEMO reactor. The design was enacted with a holistic approach. The influence that neutronics, thermal-hydraulics (TH), thermo-mechanics (TM) and magneto-hydro-dynamics (MHD) may have on the design were considered at the same time. This new approach allowed for the design team to create a WCLL BB layout that is able to comply with different foreseen requirements in terms of integration, tritium self-sufficiency, and TH and TM needs. In this paper, the rationale behind the design choices and the main characteristics of the WCLL BB needed for the EU-DEMO …
Analysis of the thermo-mechanical behaviour of IFMIF Target Assembly
Analysis of the Thermo-Mechanical Behaviour of the EU DEMO Water-Cooled Lithium Lead Central Outboard Blanket Segment under an Optimized Thermal Field
Within the framework of the EUROfusion research activities on the DEMO Water-Cooled Lithium Lead (WCLL) Breeding Blanket (BB) design, a research study was performed to preliminarily optimize, from the thermal point of view, the WCLL Central Outboard Blanket (COB) segment in order to investigate its structural behaviour under a realistic thermal field. In particular, a study of thermal analyses was performed to optimize the Double Walled Tubes and Segment Box cooling channels’ geometric configurations along the poloidal extension of the WCLL COB segment, in order to obtain a spatial temperature distribution fulfilling the thermal design requirement. Then, the thermo-mechanical analysis of th…
On the computational assessment of the IFMIF-EVEDA Target Assembly thermal behaviour
Analysis of the thermo-mechanical behaviour of IFMIF-EVEDA Lithium Test Loop Target Assembly
Thermal-hydraulic and thermal-structural analyses report of DEMO Helium-Cooled Pebble Bed blanket
Analysis of the thermo-mechanical behaviour of IFMIF target assembly integrated with its support framework
Development and application of an alternative modelling approach for the thermo-mechanical analysis of a DEMO water-cooled lithium lead breeding blanket segment
In the frame of the EUROfusion research activities devoted to the design of the DEMO breeding blanket (BB), the Water-Cooled Lithium-Lead BB (WCLL) concept is one of the candidates currently assessed in EU. To this end, an intense research campaign is ongoing to develop a robust geometric configuration for the WCLL BB Central Outboard Segment (COB). Since the current reference design of the WCLL COB segment is not mature enough to allow a full thermal-hydraulic assessment, an alternative procedure aimed at obtaining a thermal field for the whole segment without performing its complete thermal-hydraulic analysis is presented and applied in this work. The scope of the work is to obtain a ther…