0000000000006043

AUTHOR

Giuseppe Arrabito

0000-0001-5890-5943

Tackling Performance Challenges in Organic Photovoltaics: An Overview about Compatibilizers

Organic Photovoltaics (OPVs) based on Bulk Heterojunction (BHJ) blends are a mature technology. Having started their intensive development two decades ago, their low cost, processability and flexibility rapidly funneled the interest of the scientific community, searching for new solutions to expand solar photovoltaics market and promote sustainable development. However, their robust implementation is hampered by some issues, concerning the choice of the donor/acceptor materials, the device thermal/photo-stability, and, last but not least, their morphology. Indeed, the morphological profile of BHJs has a strong impact over charge generation, collection, and recombination processes; control o…

research product

DNA Nanostructures in Cell Biology and Medicine

research product

Improved Photocatalytic Activity of Polysiloxane TiO2 Composites by Thermally Induced Nanoparticle Bulk Clustering and Dye Adsorption

Fine control of nanoparticle clustering within polymeric matrices can be tuned to enhance the physicochemical properties of the resulting composites, which are governed by the interplay of nanoparticle surface segregation and bulk clustering. To this aim, out-of-equilibrium strategies can be leveraged to program the multiscale organization of such systems. Here, we present experimental results indicating that bulk assembly of highly photoactive clusters of titanium dioxide nanoparticles within an in situ synthesized polysiloxane matrix can be thermally tuned. Remarkably, the controlled nanoparticle clustering results in improved degradation photocatalytic performances of the material under …

research product

On the Interaction between 1D Materials and Living Cells

One-dimensional (1D) materials allow for cutting-edge applications in biology, such as single-cell bioelectronics investigations, stimulation of the cellular membrane or the cytosol, cellular capture, tissue regeneration, antibacterial action, traction force investigation, and cellular lysis among others. The extraordinary development of this research field in the last ten years has been promoted by the possibility to engineer new classes of biointerfaces that integrate 1D materials as tools to trigger reconfigurable stimuli/probes at the sub-cellular resolution, mimicking the in vivo protein fibres organization of the extracellular matrix. After a brief overview of the theoretical models r…

research product

DNA as Building Material at the Nanoscale: From Concepts to Software-aided Design

research product

Artificial Biosystems by Printing Biology

The continuous progress of printing technologies over the past 20 years has fueled the development of a plethora of applications in materials sciences, flexible electronics, and biotechnologies. More recently, printing methodologies have started up to explore the world of Artificial Biology, offering new paradigms in the direct assembly of Artificial Biosystems (small condensates, compartments, networks, tissues, and organs) by mimicking the result of the evolution of living systems and also by redesigning natural biological systems, taking inspiration from them. This recent progress is reported in terms of a new field here defined as Printing Biology, resulting from the intersection betwee…

research product

DNA Nanotechnology for Bioanalysis

This book is intended for non-specialists and students, presenting a unique introduction to the field of DNA nanotechnology. The primary focus is on the extraordinary advantages of specificity and sensitivity obtained by integrating DNA nanostructures in bioanalytical devices. DNA Nanotechnology for Bioanalysis provides a concise and rigorous description for the fabrication of various types of functional nanostructures by optimized software-aided high-yield synthesis. Following this is the explanation of methods to decorate these nanostructures with molecules such as proteins, metal nanoparticles or bioorganic moieties covalently bonded onto DNA via self-assemblage processes. Also provided …

research product

Autonomous molecularly crowded confinement in inkjet printed femtoliter-scale aqueous compartments

Natural evolution has chosen the localization of biomolecular processes into crowded sub-cellular femtoliter (fL) scale compartments for organizing complex biological processes. [1] Many synthetic biology platforms with life-like activities have been able to mimic these systems under different compartment sizes regimes. [2] However, the fabrication of crowded compartments down to sub-cellular scales is challenging, mainly because of high surface-volume ratio of these systems, finally compromising the stability of the encapsulated biomolecules. In this regard, we here bridge this gap by showing the possibility to produce femtoliter-scale aqueous droplets using a novel inkjet printing approac…

research product

Mastering the Tools: Natural versus Artificial Vesicles in Nanomedicine

Naturally occurring extracellular vesicles and artificially made vesicles represent important tools in nanomedicine for the efficient delivery of biomolecules and drugs. Since its first appearance in the literature 50 years ago, the research on vesicles is progressing at a fast pace, with the main goal of developing carriers able to protect cargoes from degradation, as well as to deliver them in a time- and space-controlled fashion. While natural occurring vesicles have the advantage of being fully compatible with their host, artificial vesicles can be easily synthetized and functionalized according to the target to reach. Research is striving to merge the advantages of natural and artifici…

research product

Emerging switchable ultraviolet photoluminescence in dehydrated Zn/Al layered double hydroxide nanoplatelets

AbstractLayered double hydroxides show intriguing physical and chemical properties arising by their intrinsic self-assembled stacking of molecular-thick 2D nanosheets, enhanced active surface area, hosting of guest species by intercalation and anion exchanging capabilities. Here, we report on the unprecedented emerging intense ultraviolet photoluminescence in Zn/Al layered double hydroxide high-aspect-ratio nanoplatelets, which we discovered to be fully activated by drying under vacuum condition and thermal desorption as well. Photoluminescence and its quenching were reproducibly switched by a dehydration–hydration process. Photoluminescence properties were comprehensively evaluated, such a…

research product

On the Relationship between Jetted Inks and Printed Biopatterns:Molecular-Thin Functional Microarrays of Glucose Oxidase

Arrays of circular spots of glucose oxidase have been obtained on functionalized silicon oxide by piezoelectric inkjet printing and the enzymatic activity toward glucose recognition has been monitored. The addition of glycerol to the molecular ink allows to obtain high spot definition and resolution (tens of micrometers wide; one molecule tall), but in spite of its well-known structural stabilizing properties, in dynamic conditions it may lead to increased protein stresses. The jetting voltage and pulse length have been found to be critical factors for both activity retention and pattern definition. High voltages and pulse lengths results in stress effects along with the loss of activity, w…

research product

Configurable low-cost plotter device for fabrication of multi-color sub-cellular scale microarrays.

We report on the construction and operation of a low-cost plotter for fabrication of microarrays for multiplexed single-cell analyses. The printing head consists of polymeric pyramidal pens mounted on a rotation stage installed on an aluminium frame. This construction enables printing of microarrays onto glass substrates mounted on a tilt stage, controlled by a Lab-View operated user interface. The plotter can be assembled by typical academic workshops from components of less than 15 000 Euro. The functionality of the instrument is demonstrated by printing DNA microarrays on the area of 0.5 squared centimeters using up to three different oligonucleotides. Typical feature sizes are 5 μm diam…

research product

A Protein-Interaction Array Inside a Living Cell

Cell phenotype is determined by protein network states that are maintained by the dynamics of multiple protein interactions.1 Fluorescence microscopy approaches that measure protein interactions in individual cells, such as by Forster resonant energy transfer (FRET), are limited by the spectral separation of fluorophores and thus are most suitable to analyze a single protein interaction in a given cell. However, analysis of correlations between multiple protein interactions is required to uncover the interdependence of protein reactions in dynamic signal networks. Available protein-array technologies enable the parallel analysis of interacting proteins from cell extracts, however, they can …

research product

Monitoring few molecular binding events in scalable confined aqueous compartments by raster image correlation spectroscopy (CADRICS)

The assembly of scalable liquid compartments for binding assays in array formats constitutes a topic of fundamental importance in life sciences. This challenge can be addressed by mimicking the structure of cellular compartments with biological native conditions. Here, inkjet printing is employed to develop up to hundreds of picoliter aqueous droplet arrays stabilized by oil-confinement with mild surfactants (Tween-20). The aqueous environments constitute specialized compartments in which biomolecules may exploit their function and a wide range of molecular interactions can be quantitatively investigated. Raster Image Correlation Spectroscopy (RICS) is employed to monitor in each compartmen…

research product

Luminometric sub-nanoliter droplet-to-droplet array (LUMDA) and its application to drug screening by phase I metabolism enzymes.

Here we show the fabrication of the Luminometric Sub-nanoliter Droplet-to-droplet Array (LUMDA chip) by inkjet printing. The chip is easy to be implemented and allows for a multiplexed multi-step biochemical assay in sub-nanoliter liquid spots. This concept is here applied to the integral membrane enzyme CYP3A4, i.e. the most relevant enzymatic target for phase I drug metabolism, and to some structurally-related inhibitors.

research product

Inkjet Printing Quasi-Miscible Droplets for Pseudo-Planar Organic Heterojunctions

research product

DNA Sensors for the Detection of Biomolecules and Biochemical Conditions

research product

Aqueous Processed Biopolymer Interfaces for Single-Cell Microarrays

Single-cell microarrays are emerging tools to unravel intrinsic diversity within complex cell populations, opening up new approaches for the in-depth understanding of highly relevant diseases. However, most of the current methods for their fabrication are based on cumbersome patterning approaches, employing organic solvents and/or expensive materials. Here, we demonstrate an unprecedented green-chemistry strategy to produce single-cell capture biochips onto glass surfaces by all-aqueous inkjet printing. At first, a chitosan film is easily inkjet printed and immobilized onto hydroxyl-rich glass surfaces by electrostatic immobilization. In turn, poly(ethylene glycol) diglycidyl ether is graft…

research product

Layered Double Hydroxides

The impact of layered double hydroxides (LDHs) within the multidisciplinary fields of materials sciences, physics, chemistry, and biology is rapidly growing, given their easiness of synthesis, flexibility in composition, tunable biocompatibility and morphology. LDHs constitute a versatile platform for the realization of new classes of functional systems, showing unique enhanced surface effects and unprecedented properties for application in very different fields, namely, surface chemistry and catalysis, storage and triggered release of functional anions, flame retardants, drug delivery and nanomedicine, remediation, energy storage and conversion. These systems can be synthesized as self-ass…

research product

Zinc Oxide Nanowires on Printed Circuit Boards

Printed circuit boards (PCBs), which are widely used for the fabrication of electronic circuits, can only withstand rather low temperatures. For this reason, the fabrication of high-density, long ZnO nanostructures on PCBs still remains a complex task. In fact, in absence of a seed-layer, whose annealing would require high temperatures, solution-growth methods only allow to synthesize low-density arrays of nanowires. Here we evaluate methods for overcoming this issue and, as a prototype, demonstrate a simple displacement sensor.

research product

Biochips for cell biology by combined dip-pen nanolithography and DNA-directed protein immobilization.

A general methodology for patterning of multiple protein ligands with lateral dimensions below those of single cells is described. It employs dip pen nanolithography (DPN) patterning of DNA oligonucleotides which are then used as capture strands for DNA-directed immobilization (DDI) of oligonucleotide-tagged proteins. This study reports the development and optimization of PEG-based liquid ink, used as carrier for the immobilization of alkylamino-labeled DNA oligomers on chemically activated glass surfaces. The resulting DNA arrays have typical spot sizes of 4-5 μm with a pitch of 12 μm micrometer. It is demonstrated that the arrays can be further functionalized with covalent DNA-streptavidi…

research product

Bioanalysis in Femtoliter Scale Printed Artificial Systems

Printing has fueled the development of a new class of artificial biosystems for the qualitative and quantitative determination of bioanalytes [1]. In particular, the multiscale organization (from nanometers to millimeters) and multiplexed molecular composition (DNA, proteins, lipids, polymers) of such platforms enable the determination of molecular interactions in conditions mimicking/redesigning those of the living systems. Since the development of microarrays platforms [2], the downsizing of the “analyzable” feature down to femtoliter (fL) scales has permitted to develop new researches in the field of molecular condensates/confinement. Herein, two relevant examples of fL-scale systems wil…

research product

Semitransparent Perovskite Solar Cells for Building Integration and Tandem Photovoltaics: Design Strategies and Challenges

Over the past decade, halide perovskite systems have captured widespread attention among researchers since their exceptional photovoltaic (PV) performance was disclosed. The unique combination of optoelectronic properties and solution processability shown by these materials has enabled perovskite solar cells (PSCs) to reach efficiencies higher than 25% at low fabrication costs. Moreover, PSCs display enormous potential for modern unconventional PV applications, since they can be made lightweight, semitransparent (ST), and/or flexible by means of appropriate design strategies. In particular, by enabling transparency and high efficiency simultaneously, ST-PSCs hold great promise for future ve…

research product

Layered Double Hydroxides in Bioinspired Nanotechnology

Layered Double Hydroxides (LDHs) are a relevant class of inorganic lamellar nanomaterials that have attracted significant interest in life science-related applications, due to their highly controllable synthesis and high biocompatibility. Under a general point of view, this class of materials might have played an important role for the origin of life on planet Earth, given their ability to adsorb and concentrate life-relevant molecules in sea environments. It has been speculated that the organic–mineral interactions could have permitted to organize the adsorbed molecules, leading to an increase in their local concentration and finally to the emergence of life. Inspired by nature, material s…

research product

Inkjet printing methodologies for drug screening

We show for the first time a contactless, low-cost, and rapid drug screening methodology by employing inkjet printing for molecular dispensing in a microarray format. Picoliter drops containing a model substrate (D-glucose)/ inhibitor (D-glucal) couple were accurately dispensed on a single layer consisting of the enzymatic target (glucose oxidase) covalently linked to a functionalized silicon oxide support. A simple colorimetric detection method allowed one to prove the screening capability of the microarray with the possibility to assay with high reproducibility at the single spot level. Measurements of the optical signal as a function of concentration and of time verified the occurrence a…

research product

Methods, kits and means for determining intracellular interactions

Methods, kits and systems for determining whether a reaction occurs between a chimeric transmembrane receptor and an intracellular interaction partner thereof within a cell.

research product

Printing ZnO Inks: From Principles to Devices

Solution-based printing approaches permit digital designs to be converted into physical objects by depositing materials in a layer-by-layer additive fashion from microscale to nanoscale resolution. The extraordinary adaptability of this technology to different inks and substrates has received substantial interest in the recent literature. In such a context, this review specifically focuses on the realization of inks for the deposition of ZnO, a well-known wide bandgap semiconductor inorganic material showing an impressive number of applications in electronic, optoelectronic, and piezoelectric devices. Herein, we present an updated review of the latest advancements on the ink formulations an…

research product

Self-Cleaning ZnO Nanosheets for Piezoelectric Sensors

The design of wearable sensors coupling versatile analytical detection to self-cleaning is a highly desired combination, tackling the need of smart devices in response to the recent virus pandemics. To this aim, this work shows ZnO nanostructures obtained by a mild wet-chemistry approach onto ITO/PET flexible supports, resulting in wearable piezoelectric sensors exhibiting photocatalytic activity. ITO surfaces are treated with 0.5 mM KMnO4 aqueous solution (20 minutes, 90°C); ZnO growth is subsequently carried out by a previously shown wet-chemistry method [1]. SEM analysis shows the presence of a good surface coverage of ZnO nanosheets (NSs) (about 1.5 NSs/μm2) in the case of treated ITO, …

research product

Hybrid, multiplexed, functional DNA nanotechnology for bioanalysis

We herein aim to report on the fabrication of DNA nano-heterostructures usable as a robust multi-functional analytical system to obtain multiple and complex data in parallel format from a single sample with unprecedented analytical performances. The ability of chemical information contained in the sequences of programmed DNA structures to organize matter made DNA become a unique material in “the nanoworld”. Such carefully designed DNA nanostructures can then be functionalized/templated with different biomolecules/nanomaterials as different as nanoparticles, nanowires, organic molecules, peptides, and proteins with controlled spacing on the nanometer scale (<10 nm). In this way, it is possib…

research product

Imbibition of Femtoliter-Scale DNA-Rich Aqueous Droplets into Porous Nylon Substrates by Molecular Printing

This work presents the first reported imbibition mechanism of femtoliter (fL)-scale droplets produced by microchannel cantilever spotting (μCS) of DNA molecular inks into porous substrates (hydrophilic nylon). Differently from macroscopic or picoliter droplets, the downscaling to the fL-size leads to an imbibition process controlled by the subtle interplay of evaporation, spreading, viscosity, and capillarity, with gravitational forces being quasi-negligible. In particular, the minimization of droplet evaporation, surface tension, and viscosity allows for a reproducible droplet imbibition process. The dwell time on the nylon surface permits further tuning of the droplet lateral size, in acc…

research product

Nanotransducers on printed circuit boards by rational design of high-density, long, thin and untapered ZnO nanowires

Abstract Nanotransducers can offer crucial advantages in comparison with conventional sensors and actuators. However, interfacing and packaging nanostructures into complete electronic systems is very complex. Here we describe a wet chemical method for cointegrating arrays of ZnO nanowires into systems on printed circuit boards (PCBs). First, we deposit on the PCB a MnOOH layer for reproducibly increasing the nanowires density. Afterwards, we numerically demonstrate that the ligand ethylenediamine, at the isoelectric point of the ZnO nanowires tips, can effectively control, at very low concentrations, both zinc speciation and supersaturation in the nutrient solution. Accordingly, we combine …

research product

Piezoresistive semi-transparent flexible sensors by bithiophene fulleropyrrolidine thin films

Piezoresistive sensors are considered among the fundamental components of the future wearable electronic devices, given their potential applications in artificial skin, motion capture and personalized medicine.[1-5] Here, we present a cost-effective, viable fabrication approach to realize piezoresistive sensors using a novel polymeric biotiophene fulleropyrrolidine system (bis-C60Bi) synthesized on flexible ITO/PET supports by electrochemical chronoamperometry. By applying an anodic potential (1.5 V) to a solution containing the monomer, it is possible to obtain a homogeneous semi-transparent thin film on the ITO/PET surface (see Figure). AFM, XPS, UV-vis have been employed to characterize …

research product

Spontaneous Interfacial Fragmentation of Inkjet Printed Oil Droplets and Their electrical characterization

This work presents the fabrication of femtoliter-scale oil droplets by inkjet printing based on a novel mechanism for the spontaneous fragmentation at the interface with an immiscible water phase and the electrical characterization of the resulting immersed “daughter” droplets. [1] In particular, picoliter-scale fluorinated oil droplets impact on surfactant laden water phase at moderately high Weber number (101), and are subjected to spreading and capillary instabilities at the water/air interface which ultimately lead to rupture in smaller sized droplets, according to reported models for macroscale droplets systems - [2] the emerging fragmentation results in “daughter” droplets having volu…

research product

On the Effect of Downscaling in Inkjet Printed Life-Inspired Compartments

The fabrication of size-scalable liquid compartments is a topic of fundamental importance in synthetic biology, aiming to mimic the structures and the functions of cellular compartments. Here, inkjet printing is demonstrated as a customizable approach to fabricate aqueous compartments at different size regimes (from nanoliter to femtoliter scale) revealing the crucial role of size in governing the emerging of new properties. At first, inkjet printing is shown to produce homogenous aqueous compartments stabilized by oil-confinement with mild surfactants down to the hundreds of picoliter scale [1]. Raster Image Correlation Spectroscopy allows to monitor few intermolecular events by the involv…

research product

Molecular Confinement in Femtoliter scale aqueous Compartments

Molecular confinement is known to lead to acceleration of molecular dynamics along with surface interaction. Nature employs confinement in molecularly crowded, heterogeneous and, specialized femtoliter (fL) compartments inside living cells for spontaneously achieving higher reaction efficiency and spatial-programming of composite, multi-step biochemical processes. We here show the facile production of aqueous fL droplets for studying molecular confinement on a biochip. We prepare fL aqueous droplets in oil drops on solid substrates by a “field-free”- no external electric fields and electrolytes - piezoelectric inkjet printing in which a novel actuating waveform is employed by picoliter size…

research product

Piezoresistive Sensors from Bithiophene-fulleropyrrolidine Bisadducts Thin-Films

The phenomenon of piezoresistivity in materials is based on the separation of conductive domains triggered by mechanical strains, resulting in a variation of the electrical resistance.1 This property is at the core of sensors for wearable electronics, e-skins, human motion detectors and machine learning devices.2 Fundamental requirements include lightness, good transparency, high flexibility and sensitivity to tiny deformations. However, the fabrication of a system integrating all these features is challenging. Herein, we show a semitransparent piezoresistive sensor realized by an electropolymerized bithiophene‐fulleropyrrolidine bisadduct onto ITO/PET3 (see Figure 1a). The good outcome of …

research product

Interfacial fragmentation and electrical characterization of inkjet printed dil droplets

This work presents a novel mechanism for the spontaneous fragmentation of picoliter-scale oil droplets at the interface with an immiscible water phase, and the electrical characterization of the resulting immersed “daughter” droplets by an electrical impedance chip (see Figure). [1] In particular, picoliter-scale fluorinated oil droplets are produced by inkjet printing at velocity higher than 5 m/s. Upon impact on the surfactant laden water phase at moderately high Weber number , i.e. around 10, the oil droplet is subjected to spreading and capillary instabilities at the water/air interface. These ultimately lead to its rupture in smaller sized droplets, according to the reported models for…

research product

Printing Life-Inspired Subcellular Scale Compartments with Autonomous Molecularly Crowded Confinement.

A simple, rapid, and highly controlled platform to prepare life-inspired subcellular scale compartments by inkjet printing has been developed. These compartments consist of fL-scale aqueous droplets (few µm in diameter) incorporating biologically relevant molecular entities with programmed composition and concentration. These droplets are ink-jetted in nL mineral oil drop arrays allowing for lab-on-chip studies by fluorescence microscopy and fluorescence life time imaging. Once formed, fL-droplets are stable for several hours, thus giving the possibility of readily analyze molecular reactions and their kinetics and to verify molecular behavior and intermolecular interactions. Here, this pla…

research product

"Writing biochips": high-resolution droplet-to-droplet manufacturing of analytical platforms.

The development of high-resolution molecular printing allows the engineering of analytical platforms enabling applications at the interface between chemistry and biology, i.e. in biosensing, electronics, single-cell biology, and point-of-care diagnostics. Their successful implementation stems from the combination of large area printing at resolutions from sub-100 nm up to macroscale, whilst controlling the composition and the volume of the ink, and reconfiguring the deposition features in due course. Similarly to handwriting pens, the engineering of continuous writing systems tackles the issue of the tedious ink replenishment between different printing steps. To this aim, this review articl…

research product

Printing Biology for Advanced Synthetic Biosystem

Printing technologies represent a powerful tool for the direct micro- and nano- fabrication of biomolecular structures at the interface between life and materials sciences (Arrabito et al., 2012). Their continuous development over the last years has permitted the onset of man-made biosystems with customizable dimensions (from the micron-scale down to the nanometer scale), composition (organic molecules, DNA, proteins, phospholipids), and relevant functions (molecular interactions, drug screening, cellular biointerfaces, cell-like compartments). In this work, we show the possibility to leverage the fabrication of a wide class of solid-supported or liquid-liquid based synthetic compartments b…

research product

Sub-Cellular Scale Compartments: Printing Life-Inspired Subcellular Scale Compartments with Autonomous Molecularly Crowded Confinement (Adv. Biosys. 7/2019)

research product

Self-cleaning ZnO/ITO/PET Bending Sensors

The design of multifunctional materials is of pivotal importance for developing wearable biosensors. In particular, the advancement in self-cleaning materials suitable for bending sensors, i.e. devices able to track human body movements for healthcare monitoring [1], has raised much interest in recent pandemic times. Such technology can be facilitated by leveraging piezo-photocatalytic cleaning effects under visible light [2]. Herein, we show a new class of ZnO-based nanosheets (NSs) synthesized in aqueous solution (85 °C, 24 hours) onto seeded or seedless ITO/PET surfaces that couple sensing to photocatalysis. UV-vis and FT-IR spectroscopies show the typical absorption peaks of ZnO. A nano…

research product

Inkjet printing Ag nanoparticles for SERS hot spots

A novel inkjet printing based approach is developed for the fabrication of a customizable platform on glass substrates allowing for surface enhanced Raman spectroscopy (SERS) detection of analytes up to single hot spots generated by the spontaneous aggregation of Ag nanoparticles (Ag NPs) in pL scale droplets. After drying the printed droplets under ambient conditions, trace amounts of the analyte can be detected by SERS given the proximity to NP hot spots. By employing alizarin (10-5M) as a model system and scaling the ink droplet volume from 1 nL to 10 pL, the absolute quantity of hot spots has been derived in the printed droplets allowing detecting up to a few molecules in proximity to i…

research product

Bending Sensors Based on Thin Films of Semitransparent Bithiophene-Fulleropyrrolidine Bisadducts

In this study, a novel bithiophene‐fulleropyrrolidine bisadducts system (bis‐Th2PC 60 ) was synthesized and electropolymerized by chronoamperometry onto flexible ITO/PET substrates. The resulting semitransparent thin film was characterized by XPS, FT‐IR, cyclic voltammetry and optical techniques, confirming the good outcome of the electropolymerization process. AFM investigations permitted to highlight an inherent disordered granular morphology, in which the grain‐to‐grain separation depends upon the application of bending. The electrical resistance of the thin film was characterized as function of bending (in the range 0°‐90°), showing promising responsivity to low bending angles (10°‐30°)…

research product

Self-Cleaning Bending Sensors Based on Semitransparent ZnO Nanostructured Films

The design of multifunctional nanostructured materials is the key to the development of smart wearable devices. For instance, nanostructures endowed with both piezoelectric and photocatalytic activities could well be the workhorse for solar-light-driven self-cleaning wearable sensors. In this work, a simple strategy for the assembly of a flexible, semitransparent piezophotocatalytic system is demonstrated by leveraging rational wet chemistry synthesis of ZnO-based nanosheets/nanoflowers (NSs/NFs) under basic pH conditions onto flexible ITO/PET supports. A KMnO4 pretreatment before the ZnO synthesis (seeded ZnO) allows for the control of the density, size, and orientation of the NSs/NFs syst…

research product

Vertically Aligned Nanowires and Quantum Dots: Promises and Results in Light Energy Harvesting

The synthesis of crystals with a high surface-to-volume ratio is essential for innovative, high-performance electronic devices and sensors. The easiest way to achieve this in integrated devices with electronic circuits is through the synthesis of high-aspect-ratio nanowires aligned vertically to the substrate surface. Such surface structuring is widely employed for the fabrication of photoanodes for solar cells, either combined with semiconducting quantum dots or metal halide perovskites. In this review, we focus on wet chemistry recipes for the growth of vertically aligned nanowires and technologies for their surface functionalization with quantum dots, highlighting the procedures that yie…

research product

DNA-based biosensor on flexible nylon substrate by dip-pen lithography for topoisomerase detection

Dip-pen lithography (DPL) technique has been employed to develop a new flexible biosensor realized on nylon with the aim to detect the activity of human topoisomerase. The sensor is constituted by an ordered array of a DNA substrate on flexible nylon supports that can be exploited as a drug screening platform for anticancer molecules. Here, we demonstrate a rapid protocol that permits to immobilize minute quantities of DNA oligonucleotides by DPL on nylon surfaces. Theoretical and experimental aspects have been investigated to successfully print DNA oligonucleotides by DPL on such a porous and irregular substrate.

research product

Oil-in-Water fL Droplets by Interfacial Spontaneous Fragmentation and Their Electrical Characterization

Inkjet printing is here employed for the first time as a method to produce femtoliter-scale oil droplets dispersed in water. In particular, picoliter-scale fluorinated oil (FC40) droplets are printed in the presence of perfluoro-1-octanol surfactant at a velocity higher than 5 m/s. Femtoliter-scale oil droplets in water are spontaneously formed through a fragmentation process at the water/air interface using minute amounts of nonionic surfactant (down to 0.003% v/v of Tween 80). This fragmentation occurs by a Plateau-Rayleigh mechanism at a moderately high Weber number (10(1)). A microfluidic chip with integrated microelectrodes allows droplets characterization in terms of number and diamet…

research product

Printing Biology: engineering analytical platforms by molecular inks

research product

Pseudo-Planar Organic Heterojunctions by Sequential Printing of Quasi-Miscible Inks

This work deals with the interfacial mixing mechanism of picoliter (pL)-scale droplets produced by sequential inkjet printing of organic-based inks onto ITO/PET surfaces at a moderately high Weber number (~101). Differently from solution dispensing processes at a high Bond number such as spin coating, the deposition by inkjet printing is strictly controlled by droplet velocity, ink viscosity, and surface tension. In particular, this study considers the interfacial mixing of droplets containing the most investigated donor/acceptor couple for organic solar cells, i.e., poly(3-hexylthiophene) (P3HT) and (6,6)-phenyl-C61-butyric acid methyl ester (PCBM), showing how low-viscosity and low-surfac…

research product

High-density ZnO Nanowires as a Reversible Myogenic-Differentiation-Switch

Mesoangioblasts are outstanding candidates for stem-cell therapy and are already being explored in clinical trials. However, a crucial challenge in regenerative medicine is the limited availability of undifferentiated myogenic progenitor cells because growth is typically accompanied by differentiation. Here reversible myogenic-differentiation switching during proliferation is achieved by functionalizing the glass substrate with high-density ZnO nanowires (NWs). Specifically, mesoangioblasts grown on ZnO NWs present a spherical viable undifferentiated cell state without lamellopodia formation during the entire observation time (8 days). Consistently, the myosin heavy chain, typically express…

research product

SUPERHYDROPHOBIC TIO2-FLUORINATED POLYSILOXANE NANOCOMPOSITES WITH PHOTOCATALYTIC CLEANING ACTIVITY FOR CULTURAL HERITAGE APPLICATIONS

research product

Solution Processed Micro- and Nano-Bioarrays for Multiplexed Biosensing

This Feature article reports on solution dispensing methodologies which enable the realization of multiplexed arrays at the micro- and nanoscale for relevant biosensing applications such as drug screening or cellular chips.

research product

DNA-aided Super-resolution Bioimaging

research product

Layered Double Hydroxides: A Toolbox for Chemistry and Biology

Layered double hydroxides (LDHs) are an emergent class of biocompatible inorganic lamellar nanomaterials that have attracted significant research interest owing to their high surface-to-volume ratio, the capability to accumulate specific molecules, and the timely release to targets. Their unique properties have been employed for applications in organic catalysis, photocatalysis, sensors, drug delivery, and cell biology. Given the widespread contemporary interest in these topics, time-to-time it urges to review the recent progresses. This review aims to summarize the most recent cutting-edge reports appearing in the last years. It firstly focuses on the application of LDHs as catalysts in re…

research product

Ink depletion-free printing of phospholipids micropatches

research product

High-density ZnO nanowires for cellular biointerfaces: a new role as myogenic differentiation switch

The design of artificial platforms for expanding undifferentiated stem cells is of tremendous importance for regenerative medicine [1]. We have recently demonstrated that a ZnO nanowires (NWs) decorated glass support permits to obtain a differentiation switch during proliferation for mesoangioblasts (MABs)– i.e. multipotent progenitor cells which are remarkable candidates for the therapy of muscle diseases [2]. We have optimized the ZnO NWs synthesis on glass surfaces by numerical simulations and experimental systematic investigations, considering zinc speciation and supersaturation [3]. In particular, we demonstrated by numerical simulations that the ligand ethylenediamine, at the isoelect…

research product

Low angle bending detection semi-transparent piezoresistive sensor

We designed, fabricated, and validated a piezoresistive bending sensor, a fundamental component of wearable electronic devices for monitoring human motion. The most diffused opaque carbon-based resistance flex sensors suffer from low detection for small bending angles. The sensor we here present is based on a semi-transparent active material (fulleropyrrolidine bisadducts polymer) and has the remarkable advantage of good electrical properties for low bending angles. The fabrication steps are effective since a pre-patterned ITO/PET surface is functionalized by chronoamperometric deposition, and the silver electrical contacts are inkjet printed. We propose a fitting function of the measured t…

research product