0000000000006109

AUTHOR

José Ferrer

0000-0002-1667-3854

Performance of a membrane-coupled high-rate algal pond for urban wastewater treatment at demonstration scale

[EN] The objective of this study was to evaluate the performance of an outdoor membrane-coupled high-rate algal pond equipped with industrial-scale membranes for treating urban wastewater. Decoupling biomass retention time (BRT) and hydraulic retention time (HRT) by membrane filtration resulted in improved process efficiencies, with higher biomass productivities and nutrient removal rates when operating at low HRTs. At 6 days of BRT, biomass productivity increased from 30 to 66 and to 95 g.m(-3).d(-1) when operating at HRTs of 6, 4 and 2.5 days, respectively. The corresponding nitrogen removal rates were 4, 8 and 11 g N.m(-3).d(-1) and the phosphorous removal rates were 0.5, 1.3 and 1.6 g P…

research product

Harvesting Energy from Wastewater Using an Innovative Anaerobic Membrane Bioreactor

research product

Relating ions concentration variations to conductivity variations in a sequencing batch reactor operated for enhanced biological phosphorus removal

In this paper a deterministic relationship between ionic conductivity and phosphorus concentration variations in an enhanced biological phosphorus removal (EBPR) process is established. Conductivity shows a strong correlation with phosphorus in both anaerobic and aerobic stages, increasing or decreasing when phosphorus is released or taken up, respectively. Since the end of these processes can be detected by examining the conductivity profile in a cycle, useful information on the EBPR performance and stability is available. This information can be used for adjusting the length of the anaerobic and aerobic stages. Therefore, online process control based on inexpensive and easy to maintain se…

research product

Use of biological and sedimentation models for designing Peñíscola WWTP.

This paper presents Peñíscola wastewater treatment plant design. Peñíscola is a tourist city in Castellón (Spain), whose population changes significantly between summer and the rest of the year. The design of the biological and settling treatment units has been confirmed by computer model simulations and provided for biological organic matter, nitrogen and phosphorus removal. Two different treatment schemes have been proposed in order to optimize the plant performance during both seasonal operations. During low-load season, the plant will be operated under extended aeration conditions, so further sludge stabilization will not be needed. During high-load season, the plant will be operated un…

research product

Low cost-sensors as a real alternative to on-line nitrogen analysers in continuous systems.

This paper is focused on the evaluation of the applicability of low-cost sensors (pH and ORP) versus nutrient analysers for controlling biological nitrogen removal in WWTPs. A nutrient removal pilot plant located in Carraixet WWTP (Valencia, Spain) that is equipped with a significant number of nutrient analysers and low-cost sensors was used. The relations between reliable, cheap on-line sensors such as pH and ORP (located in anaerobic, anoxic and aerobic zones) and the nitrification/denitrification processes are provided. The nitrification process can be evaluated by measuring the pH difference between the first and last aerobic zones. The denitrification process can be evaluated by measur…

research product

Natural organic matter coagulation in Valencia water supply. Pilot plant studies

: To reduce disinfection by-product (DBP) formation in drinking water treatment, the presence of natural organic matter in surface waters must be minimised. This paper describes pilot plant studies carried out on two surface waters to assess the effectiveness of coagulation in organic matter removal, the Turia and Jucar rivers, which supply the city of Valencia (1m inhabitants). The experiments were conducted with different coagulants (iron sulphate, polyaluminium chloride (PACl)) and treatment schemes. Process effectiveness was evaluated in terms of effluent turbidity, presence of residual metal in final water, and organic matter removal. Four parameters were used to quantify organic matte…

research product

Effect of ambient temperature variations on an indigenous microalgae-nitrifying bacteria culture dominated by Chlorella

[EN] Two outdoor photobioreactors were operated to evaluate the effect of variable ambient temperature on an indigenous microalgae-nitrifying bacteria culture dominated by Chlorella. Four experiments were carried out in different seasons, maintaining the temperature-controlled PBR at around 25¿°C (by either heating or cooling), while the temperature in the non-temperature-controlled PBR was allowed to vary with the ambient conditions. Temperatures in the range of 15¿30¿°C had no significant effect on the microalgae cultivation performance. However, when the temperature rose to 30¿35¿°C microalgae viability was significantly reduced. Sudden temperature rises triggered AOB growth in the indig…

research product

Using Unfold-PCA for batch-to-batch start-up process understanding and steady-state identification in a sequencing batch reactor

In chemical and biochemical processes, steady-state models are widely used for process assessment, control and optimisation. In these models, parameter adjustment requires data collected under nearly steady-state conditions. Several approaches have been developed for steady-state identification (SSID) in continuous processes, but no attempt has been made to adapt them to the singularities of batch processes. The main aim of this paper is to propose an automated method based on batch-wise unfolding of the three-way batch process data followed by a principal component analysis (Unfold-PCA) in combination with the methodology of Brown and Rhinehart 2 for SSID. A second goal of this paper is to…

research product

A mathematical approach to predict the solids concentration in anaerobic membrane bioreactos (AnMBR): Evaluation of the volatile solids solubilization

[EN] Anaerobic Membrane Bioreactors (AnMBR) are gaining attention as a suitable approach for sustainable low-strength wastewater treatment, as they bring together the advantages of both anaerobic treatments and membrane bioreactors. However, increasing the sludge retention time (SRT) necessary to favor hydrolysis increases the suspended solids concentration potentially leading to decreased permeate flux. Therefore, the availability of a mathematical approach to predict the solids concentration within an AnMBR can be very useful. In this work, a mathematical model describing the volatile solids concentration within the reactor as a function of the operating parameters and the influent charac…

research product

Characterization of activated sludge settling properties with a sludge collapse-acceleration stage

Abstract The sedimentability of the activated sludge can be affected by the presence of a large variety of coagulants and polymers from a previous physical-chemical process. In this paper, the activated sludge settling process in industrial wastewater treatment plants where the sludge does not settle in a conventional way is studied. The two observed constant hindered settling velocity stages and the instant the intermediate sludge acceleration period occurs are described. A variation of the Richardson and Zaki model is used to characterize the two stages of constant settling velocity. The concentration of suspended solids, where a sudden decrease of hindered settling velocity was observed,…

research product

Optimising an outdoor membrane photobioreactor for tertiary sewage treatment

[EN] The operation of an outdoor membrane photobioreactor plant which treated the effluent of an anaerobic membrane bioreactor was optimised. Biomass retention times of 4.5, 6, and 9 days were tested. At a biomass retention time of 4.5 days, maximum nitrogen recovery rate:light irradiance ratios, photosynthetic efficiencies and carbon biofixations of 51.7¿±¿14.3¿mg¿N·mol¿1, 4.4¿±¿1.6% and 0.50¿±¿0.05¿kg CO2·m3influent, respectively, were attained. Minimum membrane fouling rates were achieved when operating at the shortest biomass retention time because of the lower solid concentration and the negligible amount of cyanobacteria and protozoa. Hydraulic retention times of 3.5, 2, and 1.5 days …

research product

Utilización de sistemas informáticos para el diseño de estaciones de tratamiento de aguas residuales

Los sistemas informáticos para el diseño de Estaciones de Tratamiento de Aguas Residuales (ETAR) resultan de gran utilidad para la toma de decisiones relacionadas con la gestión de la calidad del agua en el medio natural. En este artículo se presenta el sistema DATAR, desarrollado para el diseño completo y riguroso de una ETAR que cumpla las especificaciones impuestas al vertido. Para ello se han desarrollado modelos matemáticos que describen los procesos que tienen lugar en los distintos elementos de tratamiento considerando los parámetros de calidad demanda biológica de oxígeno a los 5 días (DBO5), demanda química de oxígeno (DQO), sólidos suspendidos (SS), nitrógeno Kjeldhal (NKT) y fósf…

research product

Behavior of mixed Chlorophyceae cultures under prolonged dark exposure. Respiration rate modeling

[EN] The behavior of three different microalgal cultures, when exposed for a long period (>48 h) to dark conditions, was studied with a methodology based on respirometry. The cultures were transferred to darkness and the oxygen evolution in the reactors was monitored after successive air injections. Several sequential oxygen uptake rates were thus calculated and a respiration constant, assuming a first order decay of a fraction of the biomass, was obtained by calibration. Initial specific oxygen uptake rates were in the range of 0.9 5.1 mg O2 g TSS−1 h−1 and dark respiration constants in the range of 0.005 0.018 h−1.

research product

Cadmium and Zinc Adsorption onto Activated Carbon: Influence of Temperature, pH and Metal/Carbon Ratio

The adsorption characteristics of cadmium and zinc onto a granular activated carbon were studied. Cadmium and zinc removals increased on raising pH and temperature, and decreased on raising the molar metal/carbon ratio. The adsorption processes were modelled using the surface complex formation (SCF) Triple Layer Model (TLM) with an overall bidentate species. A dependence of the SCF constant on pH, the molar metal/carbon ratio and temperature was observed, and a correlation for log K ads was determined. The SCF model successfully predicted cadmium and zinc removals.

research product

Assessment of cross-flow filtration as microalgae harvesting technique prior to anaerobic digestion: Evaluation of biomass integrity and energy demand

[EN] In the present study, the effect of cross-flow filtration (CFF) on the overall valorization of Chlorella spp. microalgae as biogas was assessed. The effect of CFF on microalgae cell integrity was quantified in terms of viability which was correlated with the anaerobic biodegradability. The viability dropped as the biomass concentration increased, whereas anaerobic biodegradability increased linearly with the viability reduction. It was hypothesized that a stress-induced release and further accumulation of organic polymers during CFF increased the flux resistance which promoted harsher shear-stress conditions. Furthermore, the volume reduction as the concentration increased entailed an …

research product

Resource recovery from sulphate-rich sewage through an innovative anaerobic-based water resource recovery facility (WRRF)

[EN] This research work proposes an innovative water resource recovery facility (WRRF) for the recovery of energy, nutrients and reclaimed water from sewage, which represents a promising approach towards enhanced circular economy scenarios. To this aim, anaerobic technology, microalgae cultivation, and membrane technology were combined in a dedicated platform. The proposed platform produces a high-quality solid- and coliform-free effluent that can be directly discharged to receiving water bodies identified as sensitive areas. Specifically, the content of organic matter, nitrogen and phosphorus in the effluent was 45 mg COD.L-1 , 14.9 mg N.L-1 and 0.5 mg P.L-1 , respectively. Harvested solar…

research product

An extension of ASM2d including pH calculation

This paper presents an extension of the Activated Sludge Model No. 2d (ASM2d) including a chemical model able to calculate the pH value in biological processes. The developed chemical model incorporates the complete set of chemical species affecting the pH value to ASM2d describing non-equilibrium biochemical processes. It considers the system formed by one aqueous phase, in which biochemical processes take place, and one gaseous phase, and is based on the assumptions of instantaneous chemical equilibrium under liquid phase and kinetically governed mass transport between the liquid and gas phase. The ASM2d enlargement comprises the addition of every component affecting the pH value and an i…

research product

Calibration of denitrifying activity of polyphosphate accumulating organisms in an extended ASM2d model

Abstract This paper presents the results of an experimental study for the modelling and calibration of denitrifying activity of polyphosphate accumulating organisms (PAOs) in full-scale WWTPs that incorporate simultaneous nitrogen and phosphorus removal. The convenience of using different yields under aerobic and anoxic conditions for modelling biological phosphorus removal processes with the ASM2d has been demonstrated. Thus, parameter ηPAO in the model is given a physical meaning and represents the fraction of PAOs that are able to follow the DPAO metabolism. Using stoichiometric relationships, which are based on assumed biochemical pathways, the anoxic yields considered in the extended A…

research product

Model performance of partial least squares in utilizing the visible spectroscopy data for estimation of algal biomass in a photobioreactor

[EN] Spectroscopy technology and statistical methods (Partial Least Squares) have been integrated to develop a model that allows estimating the microalgal biomass in a photobioreactor. The model employing PLS combines the absorption spectrum measurements in the visible range (400-750 nm) with a microalgae cell density in a water sample. First, a calibration model was constructed using a calibration data set, and then, the predictive capacity of the model was determined by cross validation. Finally, an external validation of the predictive performance of the model was carried out with an independent data set. To test the accuracy of the model it was applied to different culture conditions yi…

research product

New frontiers from removal to recycling of nitrogen and phosphorus from wastewater in the Circular Economy

[EN] Nutrient recovery technologies are rapidly expanding due to the need for the appropriate recycling of key elements from waste resources in order to move towards a truly sustainable modern society based on the Circular Economy. Nutrient recycling is a promising strategy for reducing the depletion of non-renewable resources and the environmental impact linked to their extraction and manufacture. However, nutrient recovery technologies are not yet fully mature, as further research is needed to optimize process efficiency and enhance their commercial applicability. This paper reviews state-of-the-art of nutrient recovery, focusing on frontier technological advances and economic and environ…

research product

Evaluation of activated sludge model no.2 at high phosphorus concentrations

This paper presents laboratory scale experimentation carried out to study enhanced biological phosphorus removal at high phosphorus concentrations in a sequencing batch reactor. Four series of data obtained in a sequencing batch reactor are examined in light of the Activated Sludge Model No. 2. This model was calibrated using data from the first and second series working at low phosphorus concentrations. The Activated Sludge Model No. 2 successfully characterised the enhanced biological phosphorus removal performance of the sequencing batch reactor at low phosphorus concentrations. The calibrated model was then used to adjust experimental results of the other series working at high phosphor…

research product

A new strategy to maximize organic matter valorization in municipalities: combination of urban wastewater with kitchen food waste and its treatment with AnMBR technology

[EN] The aim of this study was to evaluate the feasibility of treating the kitchen food waste (FW) jointly with urban wastewater (WW) in a wastewater treatment plant (WWTP) by anaerobic membrane technology (AnMBR). The experience was carried out in six different periods in an AnMBR pilot-plant for a total of 536 days, varying the SRT, HRT and the food waste penetration factor (PF) of food waste disposers. The results showed increased methane production of up to 190% at 70 days SRT, 24 hours HRT and 80% PF, compared with WW treatment only. FW COD and biodegradability were higher than in WW, so that the incorporation of FW into the treatment increases the organic load and the methane producti…

research product

Calcium phosphate precipitation in a SBR operated for EBPR: interactions with the biological process.

The aim of this paper is to study the precipitation process in a sequencing batch reactor (SBR) operated for EBPR (enhanced biological phosphorus removal) and the possible effects of this phosphorus precipitation in the biological process. Four experiments were carried out under different influent calcium concentration. The experimental results and the equilibrium study, based on the Saturation Index calculation, confirm that the process controlling the calcium behaviour in a SBR operated for EBPR is the calcium phosphate precipitation. This precipitation takes place at two stages initially precipitation of the ACP and later crystallization of HAP. Also the accumulation of phosphorus precip…

research product

Economic analysis of the scale-up and implantation of a hollow fibre membrane contactor plant for nitrogen recovery in a full-scale wastewater treatment plant

[EN] Nitrogen recovery technologies such as the hollow fibre membrane contactor are now being developed. However, an economic analysis is needed prior to their full-scale application in wastewater treatment plants. The aim of this study was to analyse the economic and environmental aspects of scaling-up this method. To achieve it, a full-scale 40,000 m3·day¿1-wastewater treatment plant influent flow rate was simulated jointly with a membrane contactor plant to evaluate the minimum costs of optimum operating conditions of membrane contactors (pH, feed flow rate and membrane surface). The optimum conditions for treating 600 m3·day¿1 of reject water was found to be 10 pH, 0.08 m3·s¿1 feed flow…

research product

Removal and fate of endocrine disruptors chemicals under lab-scalepostreatment stage. Removal assessment using light, oxygen and microalgae

[EN] The aim of this study was to assess the effect of light, oxygen and microalgae on micropollutants removal. The studied micropollutants were 4-(1,1,3,3-tetramethylbutyl)phenol (OP), technical-nonylphenol (t-NP), 4-n-nonylphenol (4-NP), Bisphenol-A (BPA). In order to study the effect of the three variables on the micropollutants removal, a factorial design was developed. The experiments were carried out in four batch reactors which treated the effluent of an anaerobic membrane bioreactor. The gas chromatography mass spectrometry was used for the measurement of the micropollutants. The results showed that light, oxygen and microalgae affected differently to the degradation ratios of each …

research product

Experimental study of the anaerobic urban wastewater treatment in a submerged hollow-fibre membrane bioreactor at pilot scale

The aim of this study was to assess the effect of several operational variables on both biological and separation process performance in a submerged anaerobic membrane bioreactor pilot plant that treats urban wastewater. The pilot plant is equipped with two industrial hollow-fibre ultrafiltration membrane modules (PURON¿ Koch Membrane Systems, 30m 2 of filtration surface each). It was operated under mesophilic conditions (at 33°C), 70days of SRT, and variable HRT ranging from 20 to 6h. The effects of the influent COD/SO 4-S ratio (ranging from 2 to 12) and the MLTS concentration (ranging from 6 to 22gL -1) were also analysed. The main performance results were about 87% of COD removal, efflu…

research product

Struvite formation from the supernatants of an anaerobic digestion pilot plant

This work studied the influence of the characteristics of the supernatants on the struvite precipitation process. Eighteen experiments with the supernatants generated in an anaerobic digestion pilot plant were performed in a stirred reactor. In order to obtain the pH control during the crystallization process, a Fuzzy Logic based controller was used. High phosphorus precipitation and recovery efficiencies were obtained. The composition of the supernatants was analyzed in order to study its influence on the solids formed from those solutions. The presence of calcium reduced the percentage of phosphorus precipitated as struvite leading to the formation of amorphous calcium phosphate (ACP), wh…

research product

Monitoring pH and ORP in a SHARON reactor

This paper analyses the valuable information provided by the on-line measurements of pH and oxidation reduction potential (ORP) in a continuous single high ammonia removal over nitrite (SHARON) reactor. A laboratory-scale SHARON reactor equipped with pH, ORP, electric conductivity and dissolved oxygen (DO) probes has been operated for more than one year. Nitrogen removal over nitrite has been achieved by adding methanol at the beginning of anoxic stages. Time evolution of pH and ORP along each cycle allows identifying the decrease in nitritation rate when ammonia is consumed during the aerobic phase and the end of the denitrification process during the anoxic phase. Therefore, monitoring pH…

research product

Outdoor flat-panel membrane photobioreactor to treat the effluent of an anaerobic membrane bioreactor. Influence of operating, design, and environmental conditions

[EN] As microalgae have the ability to simultaneously remove nutrients from wastewater streams while producing valuable biomass, microalgae-based wastewater treatment is a win-win strategy. Although recent advances have been made in this field in lab conditions, the transition to outdoor conditions on an industrial scale must be further investigated. In this work an outdoor pilot-scale membrane photobioreactor plant was operated for tertiary sewage treatment. The effects of different parameters on microalgae performance were studied including: temperature, light irradiance (solar and artificial irradiance), hydraulic retention time (HRT), biomass retention time (BRT), air sparging system an…

research product

Plant-wide modelling in wastewater treatment: showcasing experiences using the Biological Nutrient Removal Model

Abstract Plant-wide modelling can be considered an appropriate approach to represent the current complexity in water resource recovery facilities, reproducing all known phenomena in the different process units. Nonetheless, novel processes and new treatment schemes are still being developed and need to be fully incorporated in these models. This work presents a short chronological overview of some of the most relevant plant-wide models for wastewater treatment, as well as the authors' experience in plant-wide modelling using the general model BNRM (Biological Nutrient Removal Model), illustrating the key role of general models (also known as supermodels) in the field of wastewater treatment…

research product

Short-term effect of ammonia concentration and salinity on activity of ammonia oxidizing bacteria.

A continuously aerated SHARON (single reactor high activity ammonia removal over nitrite) system has been operated to achieve partial nitritation. Two sets of batch experiments were carried out to study the effect of ammonia concentration and salinity on the activity of ammonia-oxidizing bacteria (AOB). Activity of AOB raised as free ammonia concentration was increased reaching its maximum value at 4.5 mg NH 3 -N l −1 . The half saturation constant for free ammonia was determined (K NH 3 = 0.32 mg NH 3 -N l −1 ). Activity decreased at TAN (total ammonium–nitrogen) concentration over 2,000 mg NH 4 -N l −1 . No free ammonia inhibition was detected. The effect of salinity was studied by adding…

research product

Modeling light and temperature influence on ammonium removal by Scenedesmus sp. under outdoor conditions.

[EN] The ammonium removal rate of the microalga Scenedesmus sp. was studied under outdoor conditions. Microalgae were grown in a 500 L flat-plate photobioreactor and fed with the effluent of a submerged anaerobic membrane bioreactor. Temperature ranged between 9.5 WC and 32.5 WC and maximum light intensity was 1,860 μmol·m2·s1. A maximum specific ammonium removal rate of 3.71 mg NH4 þ-N·g TSS1·h1 was measured (at 22.6 WC and with a light intensity of 1,734 μmol·m2·s1). A mathematical model considering the influence of ammonium concentration, light and temperature was validated. The model successfully reproduced the observed values of ammonium removal rate obtained and it is thus p…

research product

DESASS: A software tool for designing, simulating and optimising WWTPs

This paper presents a very useful software tool to design, simulate and optimise wastewater treatment plants. The program is called DESASS (DEsign and Simulation of Activated Sludge Systems) and has been developed by CALAGUA research group. The mathematical model implemented is the Biological Nutrient Removal Model No.1 (BNRM1) which allows simulating the most important physical, chemical and biological processes taking place in treatment plants. DESASS calculates the performance under steady or transient state of whole treatment schemes including primary settlers, volatile fatty acid generation systems by primary sludge fermentation, activated sludge systems for biological organic matter a…

research product

A semi-industrial scale AnMBR for municipal wastewater treatment at ambient temperature: performance of the biological process

A semi-industrial scale AnMBR plant was operated for more than 600 days to evaluate the long-term operation of this technology at ambient temperature (ranging from 10 to 27 ºC), variable hydraulic retention times (HRT) (from 25 to 41 h) and influent loads (mostly between 15 and 45 kg COD·d−1). The plant was fed with sulfate-rich high-loaded municipal wastewater from the pre-treatment of a full-scale WWTP. The results showed promising AnMBR performance as the core technology for wastewater treatment, obtaining an average 87.2 ± 6.1 % COD removal during long-term operation, with 40 % of the data over 90%. Five periods were considered to evaluate the effect of HRT, influent characteristics, CO…

research product

Use of neurofuzzy networks to improve wastewater flow-rate forecasting

A neurofuzzy wastewater flow-rate forecasting model (NFWFFM) has been developed and tested with actual data measured at the input of two wastewater treatment facilities which treat the wastewater corresponding to 150,000 and 1,250,000p.e., respectively. Good agreements between forecasted and actual flow-rates were obtained. The artificial intelligence algorithm uses only two input variables (day of the week and average daily flow-rate of day before) and one output variable (predicted average daily flow-rate). Using three months data for training the network, a long-term forecast (one month) is made with average errors below 10%. Results were compared with those obtained by applying the Cens…

research product

Performance of industrial scale hollow-fibre membranes in a submerged anaerobic MBR (HF-SAnMBR) system at mesophilic and psychrophilic conditions

The aim of this work was to evaluate the effect of temperature on the performance of industrial hollow-fibre (HF) membranes treating urban wastewater in a submerged anaerobic MBR system (SAnMBR). To this end, a demonstration plant with two commercial HF ultrafiltration membrane modules (PURON®, Koch Membrane Systems, PUR-PSH31) was operated at 20, 25 and 33 °C. The mixed liquor total solid (MLTS) level was a key factor affecting membrane permeability (K). K was higher under psychrophilic than mesophilic conditions when operating at similar transmembrane fluxes and MLTS, because the biomass activity of the psychrophilic mixed liquor was lower than the mesophilic mixed liquor. Thus, lower ext…

research product

Microbial community characterization during anaerobic digestion of Scenedesmus spp. under mesophilic and thermophilic conditions

[EN] Microbial communities were thoroughly characterized in a mesophilic anaerobic membrane bioreactor (AnMBR) and a thermophilic continuous stirred tank reactor (CSTR), which were both treating recalcitrant microalgal biomass dominated by Scenedesmus. 16S rRNA amplicon sequencing analysis was performed when the AnMBR achieved 70% algal biodegradation and revealed high microbial diversity, probably due to the high solid retention time (SRT) of the AnMBR configuration. The bacterial community consisted of Chloroflexi (27.9%), WWE1 (19.0%) and Proteobacteria (15.4%) as the major phyla, followed by Spirochaetes (7.7%), Bacteroidetes (5.9%) and Firmicutes (3.6%). These phyla are known to exhibi…

research product

Mixed microalgae culture for ammonium removal in the absence of phosphorus: Effect of phosphorus supplementation and process modeling

Microalgal growth and ammonium removal in a P-free medium have been studied in two batch photobioreactors seeded with a mixed microalgal culture and operated for 46 days. A significant amount of ammonium (106 mg NH4-Nl(-1)) was removed in a P-free medium, showing that microalgal growth and phosphorus uptake are independent processes. The ammonium removal rate decreased during the experiment, partly due to a decrease in the cellular phosphorus content. After a single phosphate addition in the medium of one of the reactors, intracellular phosphorus content of the corresponding microalgal culture rapidly increased, and so did the ammonium removal rate. These results show how the amount of phos…

research product

Application of the General Model "Biological Nutrient Removal Model No.1" to upgrade two full-scale WWTPs

In this paper, two practical case studies for upgrading two wastewater treatment plants (WWTPs) using the general model BNRM1 (Biological Nutrient Removal Model No. 1) are presented. In the first case study, the Tarragona WWTP was upgraded by reducing the phosphorus load to the anaerobic digester in order to minimize the precipitation problems. Phosphorus load reduction was accomplished by mixing the primary sludge and the secondary sludge and by elutriating the mixed sludge. In the second case study, the Alcantarilla WWTP, the nutrient removal was enhanced by maintaining a relatively low dissolved oxygen concentration in Stage A to maintain the acidogenic bacteria activity. The VFA produce…

research product

Influence of food waste addition over microbial communities in an Anaerobic Membrane Bioreactor plant treating urban wastewater

[EN] Notorious changes in microbial communities were observed during and after the joint treatment of wastewater with Food Waste (FW) in an Anaerobic Membrane Bioreactor (AnMBR) plant. The microbial population was analysed by high-throughput sequencing of the 16S rRNA gene and dominance of Chloroflexi, Firmicutes, Synergistetes and Proteobacteria phyla was found. The relative abundance of these potential hydrolytic phyla increased as a higher fraction of FW was jointly treated. Moreover, whereas Specific Methanogenic Activity (SMA) rose from 10 to 51 mL CH4 g(-1) VS, Methanosarcinales order increased from 34.0% over 80.0% of total Archaea, being Methanosaeta the dominant genus. The effect o…

research product

Treatment of a submerged anaerobic membrane bioreactor (SAnMBR) effluent by an activated sludge system: the role of sulphide and thiosulphate in the process.

This work studies the use of a well-known and spread activated sludge system (UCT configuration) to treat the effluent of a submerged anaerobic membrane bioreactor (SAnMBR) treating domestic waste-water. Ammonia, phosphate, dissolved methane and sulphide concentrations in the SAnMBR effluent were around 55 mg NH4-N L-1, 7 mg PO4-P L-1, 30 mg non-methane biodegradable COD L-1, and 105 mg S2- L-1 respectively. The results showed a nitrification inhibition caused by the presence of sulphur compounds at any of the solids retention time (SRT) studied (15,20 and 25 days). This inhibition could be overcome increasing the hydraulic retention time (HRT) from 13 to 26 h. Among the sulphur compounds, …

research product

Wastewater nutrient removal in a mixed microalgae-bacteria culture: effect of light and temperature on the microalgae-bacteria competition.

[EN] The aim of this study was to evaluate the effect of light intensity and temperature on nutrient removal and biomass productivity in a microalgae¿bacteria culture and their effects on the microalgae¿bacteria competition. Three experiments were carried out at constant temperature and various light intensities: 40, 85 and 125¿µE¿m¿2¿s¿1. Other two experiments were carried out at variable temperatures: 23¿±¿2°C and 28¿±¿2°C at light intensity of 85 and 125¿µE¿m¿2¿s¿1, respectively. The photobioreactor was fed by the effluent from an anaerobic membrane bioreactor. High nitrogen and phosphorus removal efficiencies (about 99%) were achieved under the following operating conditions: 85¿125¿µE¿…

research product

Influence of total solids concentration on membrane permeability in a submerged hollow-fibre anaerobic membrane bioreactor.

The main aim of this work was to study the influence of the mixed liquor total solids (MLTS) concentration on membrane permeability (K 20) in a submerged anaerobic membrane bioreactor (SAnMBR) pilot plant, which is equipped with industrial hollow-fibre membranes and treats urban wastewater. This pilot plant was operated at 33°C and 70 days of SRT. Two different transmembrane fluxes (13.3 and 10 LMH) were tested with a gas sparging intensity of 0.23 Nm 3 m -2 h -1 (measured as Specific Gas Demand referred to membrane area). A linear dependence of K 20 on MLTS concentration was observed within a range of MLTS concentration from 13 to 32 g L -1 and J 20 of 10 LMH. K 20 was maintained at sustai…

research product

Potential use of the organic fraction of municipal solid waste in anaerobic co-digestion with wastewater in submerged anaerobic membrane technology

Food waste was characterized for its potential use as substrate for anaerobic co-digestion in a submerged anaerobic membrane bioreactor pilot plant that treats urban wastewater (WW). 90% of the particles had sizes under 0.5 mm after grinding the food waste in a commercial food waste disposer. COD, nitrogen and phosphorus concentrations were 100, 2 and 20 times higher in food waste than their average concentrations in WW, but the relative flow contribution of both streams made COD the only pollutant that increased significantly when both substrates were mixed. As sulphate concentration in food waste was in the same range as WW, co-digestion of both substrates would increase the COD/SO4-S rat…

research product

A review on anaerobic membrane bioreactors (AnMBRs) focused on modelling and control aspects

[EN] The use of anaerobic membrane bioreactor technology (AnMBR) is rapidly expanding. However, depending on the application, AnMBR design and operation is not fully mature, and needs further research to optimize process efficiency and enhance applicability. This paper reviews state-of-the-art of AnMBR focusing on modelling and control aspects. Quantitative environmental and economic evaluation has demonstrated substantial advantages in application of AnMBR to domestic wastewater treatment, but detailed modelling is less mature. While anaerobic process modelling is generally mature, more work is needed on integrated models which include coupling between membrane performance (including fouli…

research product

Effect of pH on biological phosphorus uptake.

An anaerobic aerobic laboratory scale sequencing batch reactor (SBR) was operated to study the effect of pH on enhanced biological phosphorus removal. Seven steady states were achieved under different operating conditions. In all of them, a slight variation in the pH value was observed during anaerobic phase. However, pH rose significantly during aerobic phase. The increase observed was due to phosphorus uptake and carbon dioxide stripping. When pH was higher than 8.2-8.25 the phosphorus uptake rate clearly decreased. The capability of Activated Sludge Model No. 2d (ASM2d) and Biological Nutrient Removal Model No. 1 (BNRM1) to simulate experimental results was evaluated. Both models success…

research product

Single and competitive adsorption of Cd and Zn onto a granular activated carbon

Single and competitive adsorption of cadmium and zinc onto granular activated carbon DARCO 12–20 mesh has been investigated. This activated carbon has been shown as an effective adsorbent for both metals. Cadmium and zinc removals increased with pH and decreased with molar metal/carbon ratio. Surface precipitation phenomena have been detected for the higher pHs and molar ratios. The adsorption process has been modelled on the surface complexation Triple Layer Model (TLM). For this purpose, the amphoteric nature of the activated carbon has been studied. Single metal adsorption data have been used to calibrate TLM parameters. A dependence of the adsorption constants on pH and molar metal/carb…

research product

Anaerobic membrane bioreactors for resource recovery from municipal wastewater: a comprehensive review of recent advances

[EN] In a paradigm shift towards a sustainable society based on the Circular Economy, wastewater treatments are rapidly evolving towards simultaneous recovery and reuse of clean water, renewable energy, and nutrients. This review examines recent advances (from 2016 to 2020) in the potential of anaerobic membrane bioreactors (AnMBRs) to serve as the core technology for municipal wastewater (MWW) resource recovery, focusing on the latest technological advances and economic and environmental innovation perspectives. The potentials and limitations of AnMBR for further full-scale application and new platforms to address these challenges are discussed, covering systems based on co-digestion, pre-…

research product

Calibration and simulation of ASM2d at different temperatures in a phosphorous removal pilot plant

In this work, an organic and nutrient removal pilot plant was used to study the temperature influence on phosphorus accumulating organisms. Three experiments were carried out at 13, 20 and 24.5 degrees C, achieving a high phosphorus removal percentage in all cases. The ASM2d model was calibrated at 13 and 20 degrees C and the Arrhenius equation constant was obtained for phosphorus removal processes showing that the temperature influences on the biological phosphorus removal subprocesses in a different degree. The 24.5 degrees C experiment was simulated using the model parameters obtained by means of the Arrhenius equation. The simulation results for the three experiments showed good corresp…

research product

Effect of long residence time and high temperature over anaerobic biodegradation of Scenedesmus microalgae grown in wastewater

[EN] Anaerobic digestion of indigenous Scenedesmus spp. microalgae was studied in continuous lab-scale anaerobic reactors at different temperatures (35 degrees C and 55 degrees C), and sludge retention time - SRT (50 and 70 days). Mesophilic digestion was performed in a continuous stirred-tank reactor (CSTR) and in an anaerobic membrane bioreactor (AnMBR). Mesophilic CSTR operated at 50 days SRT only achieved 11.9% of anaerobic biodegradability whereas in the AnMBR at 70 days SRT and 50 days HRT reached 39.5%, which is even higher than the biodegradability achieved in the thermophilic CSTR at 50 days SRT (30.4%). Microbial analysis revealed a high abundance of cellulose-degraders in both re…

research product

Endocrine disrupter compounds removal in wastewater using microalgae: Degradation kinetics assessment

[EN] This paper describes a study carried out to determine the removal kinetics of four micropollutants (4-tert-octylphenol (OP), technical-nonylphenol (t-NP), 4-nonylphenol (4-NP) and bisphenol-A (BPA)) usually found in wastewater streams. The kinetic experiments were carried out in batch reactors containing the effluent of an Anaerobic Membrane BioReactor (AnMBR) in the presence of light, oxygen and microalgae. As the degradation process of the studied micropollutants obeyed a pseudo-first-order kinetics, the second-order kinetics for each micropollutant was then calculated. The second order rate constants for the hydroxyl radical (k.(OH)) ranged from 7.0.10(+10) to 6.6.10(+12) L.mol(-1).…

research product

A methodology for sequencing batch reactor identification with artificial neural networks: A case study

This paper presents a systematic methodology based on the application of artificial neural networks for sequencing batch reactor (SBR) identification. The SBR is a fill-and-draw biological wastewater technology, which is specially suited for nutrient removal. The proposed approach makes optimal use of the available data during the training stage and it is aimed at achieving high generalization ability. For this purpose, a wide range of experimental conditions, including different solids retention times and influent characteristics, has been used. The methodology is successfully applied to develop a soft-sensor for monitoring a laboratory-scale SBR operated for enhanced biological phosphorus…

research product

Mathematical modelling of filtration in submerged anaerobic MBRs (SAnMBRs): long-term validation

The aim of this study was the long-term validation of a model capable of reproducing the filtration process occurring in a submerged anaerobic membrane bioreactor (SAnMBR) system. The proposed model was validated using data obtained horn a SAnMBR demonstration plant fitted with industrial-scale hollow-fibre membranes. The validation was carried out using both lightly and heavily fouled membranes operating at different bulk concentrations, gas sparging intensities and transmembrane fluxes. Across a broad spectrum of operating conditions, the model correctly forecast the respective experimental data in the long term. The simulation results revealed the importance of controlling irreversible f…

research product

Exploring the limits of anaerobic biodegradability of urban wastewater by AnMBR technology

[EN] Anaerobic membrane bioreactors (AnMBRs) can achieve maximum energy recovery from urban wastewater (UWW) by converting influent COD into methane. The aim of this study was to assess the anaerobic biodegradability limits of urban wastewater with AnMBR technology by studying the possible degradation of the organic matter considered as non-biodegradable as observed in aerobic membrane bioreactors operated at very high sludge retention times. For this, the results obtained in an AnMBR pilot plant operated at very high SRT (140 days) treating sulfate-rich urban wastewater were compared with those previously obtained with the system operating at lower SRT (29 to 70 days). At 140 days SRT the …

research product

Using SOM and PCA for analysing and interpreting data from a P-removal SBR

This paper focuses on the application of Kohonen self-organizing maps (SOM) and principal component analysis (PCA) to thoroughly analyse and interpret multidimensional data from a biological process. The process is aimed at enhanced biological phosphorus removal (EBPR) from wastewater. In this work, SOM and PCA are firstly applied to the data set in order to identify and analyse the relationships among the variables in the process. Afterwards, K-means algorithm is used to find out how the observations can be grouped, on the basis of their similarity, in different classes. Finally, the information obtained using these intelligent tools is used for process interpretation and diagnosis. In the…

research product

Design of nutrient removal activated sludge systems

A mechanistic mathematical model for nutrient and organic matter removal was used to describe the behavior of a nitrification denitrification enhanced biological phosphorus removal (NDEBPR) system. This model was implemented in a user-friendly software DESASS (design and simulation of activated sludge systems). A 484-L pilot plant was operated to verify the model results. The pilot plant was operated for three years over three different sludge ages. The validity of the model was confirmed with data from the pilot plant. Also, the utility of DESASS as a valuable tool for designing NDEBPR systems was confirmed.

research product

Phosphorus recovery by struvite crystallization in WWTPs: Influence of the sludge treatment line operation

Phosphorus recovery by struvite (MgNH(4)PO(4).6H(2)O) crystallization is one of the most widely recommended technologies for treating sludge digester liquors especially in wastewater treatments plants (WWTP) with enhanced biological phosphorus removal (EBPR). In this paper, phosphorus recovery by struvite crystallization is assessed using the rejected liquors resulting from four different operational strategies of the sludge treatment line. Phosphorus precipitation and recovery efficiencies of between 80-90% and 70-85%, respectively, were achieved in the four experiments. The precipitates formed were mainly struvite, followed by amorphous calcium phosphate and, in some experiments, by calci…

research product

Application of the Morris method for screening the influential parameters of fuzzy controllers applied to wastewater treatment plants

In this paper,we evaluate the application of a sensitivity analysis to help fine-tuning a fuzzy controller for a biological nitrogen and phosphorus removal (BNPR) plant. TheMorris Screeningmethod is proposed and evaluated as a prior step to obtain the parameter significance ranking. First, an iterative procedure has been performed in order to find out the proper repetition number of the elementary effects (r) of the method. The optimal repetition number found in this study (r = 60) is in direct contrast to previous applications of the Morris method, which usually use low repetition number, e.g. r = 10 ~ 20. Working with a non-proper repetition number (r) could lead to Type I error (identify…

research product

Detection and prevention of enhanced biological phosphorus removal deterioration caused by Zoogloea overabundance.

A sequencing batch reactor was operated in the conventional anaerobic-aerobic mode for enhanced biological phosphorus removal using acetate as the sole substrate. Despite the nutrients concentrations in the influent being high enough to satisfy the biological requirements, Zoogloea ramigera managed to grow in the system until it had negative effects on the process performance. The excess of exocellular polymeric material produced by this microorganism contributed to a viscous bulking phenomenon and caused important settling problems. The examination of the sludge under the microscope was a valuable tool to diagnose the cause of the imbalance in the process. The strategy adopted to avoid the…

research product

DSC: software tool for simulation-based design of control strategies applied to wastewater treatment plants.

This paper presents a computer tool called DSC (Simulation based Controllers Design) that enables an easy design of control systems and strategies applied to wastewater treatment plants. Although the control systems are developed and evaluated by simulation, this tool aims to facilitate the direct implementation of the designed control system to the PC of the full-scale WWTP (wastewater treatment plants). The designed control system can be programmed in a dedicated control application and can be connected to either the simulation software or the SCADA of the plant. To this end, the developed DSC incorporates an OPC server (OLE for process control) which facilitates an open-standard communic…

research product

Energy and environmental impact of an anaerobic membrane bioreactor (AnMBR) demonstration plant treating urban wastewater

Abstract In order to assess the environmental feasibility of anaerobic membrane bioreactor (AnMBR) technology for urban wastewater (UWW) treatment at ambient temperature, a demonstration plant was operated within the LIFE MEMORY project ( http://www.life-memory.eu/en/ ). This plant incorporates full-scale hollow-fiber membrane modules and was fed with the effluent from the pre-treatment of the “Alcazar de San Juan” WWTP (Alcazar de San Juan, Ciudad Real, Spain). Because of the dimensions of this plant, the system can be regarded as a previous step to the scale-up of AnMBR technology for full-scale UWW treatment. High-energy recovery potentials were achieved treating medium-/high-loaded UWW …

research product

AnMBR, reclaimed water and fertigation: Two case studies in Italy and Spain to assess economic and technological feasibility and CO2 emissions within the EU Innovation Deal initiative

[EN] The use of anaerobic membrane bioreactor (AnMBR) technology on urban wastewater can help to alleviate droughts, by reusing the water and nutrients embedded in the effluent in agriculture (fertigation) in line with Circular Economy principles. The combination of AnMBR and fertigation reduces CO2 emissions due to the organic matter valorization and the partial avoidance of mineral fertilizer requirements. However, both AnMBR and fertigation still face technological and regulatory barriers that need to be overcome. These bottlenecks were tackled within the first Innovation Deal approved by the European Commission in 2016, and gave rise to several case studies on water reuse systems. The r…

research product

Microalgae cultivation in wastewater: nutrient removal from anaerobic membrane bioreactor effluent

This study investigated the removal of nitrogen and phosphorus from the effluent of a submerged anaerobic membrane bioreactor (SAnMBR) by means of a lab-scale photobioreactor in which algae biomass was cultured in a semi-continuous mode for a period of 42 days. Solids retention time was 2 days and a stable pH value in the system was maintained by adding CO2. Nitrogen and phosphorus concentrations in the SAnMBR effluent fluctuated according to the operating performance of the bioreactor and the properties of its actual wastewater load. Despite these variations, the anaerobic effluent proved to be a suitable growth medium for microalgae (mean biomass productivity was 234 mgl(-1) d(-1)), achie…

research product

Calcium effect on enhanced biological phosphorus removal.

The role of calcium (Ca) in enhanced biological phosphorus removal and its possible implications on the metabolic pathway have been studied. The experience has been carried out in an SBR under anaerobic–aerobic conditions for biological phosphorus removal during 8 months. The variations of influent Ca concentration showed a clear influence on the EBPR process, detecting significant changes in YPO4. These YPO4 variations were not due to influent P/COD ratio, pH, denitrification and calcium phosphate formation. The YPO4 has been found to be highly dependent on the Ca concentration, increasing as Ca concentration decreases. The results suggest that high Ca concentrations produce “inert” granul…

research product

Modeling the decay of nitrite oxidizing bacteria under different reduction potential conditions

[EN] Autotrophic growth and decay rates of ammonium and nitrite oxidizing bacteria (AOB and NOB, respectively) have a significant impact on the design and on the process performance of wastewater treatment systems where nitrification occurs. Literature data on the separate decay rates of AOB and NOB is scarce and inconsistent. In this study, batch experiments based on respirometric techniques were conducted to determine the NOB decay rates under different oxidation-reduction potential conditions, in order to widen the understanding of nitrite dynamics. The decay rate measured under anoxic conditions was 85% lower than under aerobic conditions, whereas under anaerobic conditions the decay ra…

research product

Fate of endocrine disruptor compounds in an anaerobic membrane bioreactor (AnMBR) coupled to an activated sludge reactor

[EN] The occurrence and fate of three groups of micropollutants - alkylphenols, pentachlorophenol and hormones - were studied in a pilot plant consisting of an anaerobic membrane bioreactor (AnMBR) coupled to an activated sludge reactor (University of Cape Town configuration - UCT). Under anaerobic conditions, the octylphenol and technical-nonylphenol soluble concentrations increased producing negative degradation ratios (i.e., -175 and -118%, respectively). However, high 4-n-nonylphenol and bisphenol-A degradation ratios (92 and 59% for 4-n-nonylphenol and bisphenol-A, respectively) as well as complete pentachlorophenol, estrone, 17 beta-estradiol and 17 alpha-ethinylestradiol removal were…

research product

Interactions between calcium precipitation and the polyphosphate-accumulating bacteria metabolism

A sequencing batch reactor that is operated for biological phosphorus removal has been operated under different influent calcium concentrations to study the precipitation process and the possible effects of phosphorus precipitation in the biological phosphorus removal process. Four experiments were carried out under different influent calcium concentrations ranging from 10 to 90 g Ca m(-3). The experimental results and the equilibrium study, which are based on the saturation index calculation, confirm that the process controlling the calcium behaviour is the calcium phosphate precipitation. This precipitation takes place at two stages: initially, precipitation of the amorphous calcium phosp…

research product

A modification to the Activated Sludge Model No. 2 based on the competition between phosphorus-accumulating organisms and glycogen-accumulating organisms

A modification to the ASM2 is proposed which permits representation of the competition between phosphorus accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) in a nutrient removal activated sludge system. Some important aspects, which are not considered in ASM2, are discussed. The proposed modification includes denitrification by PAOs, PAO glycogen storage capability and GAO metabolism model. It is shown that the proposed modification is capable of describing pilot plant data using a single set of stoichiometric and kinetic parameters over three different sludge ages (16, 14 and 12 days). The modified ASM2 may be applicable to a wide range of situations where PAOs and G…

research product

Wastewater COD characterization: analysis of respirometric and physical-chemical methods for determining biodegradable organic matter fractions

BACKGROUND: In this work, a comprehensive study of the respirometric and physical–chemical methods has been performed to evaluate the information provided by these two methodologies in order to assess the biodegradable organic matter fractions of wastewater. RESULTS: First, an analysis was performed of the influence of the initial substrate on biomass ratio (F0/X0) in the assessment of readily biodegradable organic matter, SS, through respirometric experiments. In order to achieve an adequate assessment of the SS component, similar conditions (given by the initial F0/X0 ratio) must be employed in experiments that are carried to determine SS and YH (heterotrophic yield). Second, a comparativ…

research product

Filtration process cost in submerged anaerobic membrane bioreactors (AnMBRs) for urban wastewater treatment

[EN] The objective of this study was to evaluate the effect of the main factors affecting the cost of the filtration process in submerged anaerobic membrane bioreactors (AnMBRs) for urban wastewater (UWW) treatment. Experimental data for CAPEX/OPEX calculations was obtained in an AnMBR system featuring industrial-scale hollow-fiber (HF) membranes. Results showed that operating at J(20) slightly higher than the critical flux results in minimum CAPEX/OPEX. The minimum filtration process cost ranged from Euro0.03 to Euro0.12 per m(3), mainly depending on SGD(m) (from 0.05 to 0.3 m(3)m(-2)h(-1)) and MLSS (from 5 to 25 gL-1). The optimal SGD(m) resulted in approx. 0.1 m(3)m(-2)h(-1).

research product

Calibration and validation of activated sludge model No.2d for Spanish municipal wastewater.

Activated Sludge Model No. 2d (ASM2d) was validated with data obtained from pilot scale plant treating municipal wastewater from the city of Valencia (Spain). First of all, ASM2d was calibrated using experimental data from anaerobic, anoxic and aerobic batches. A set of kinetic and stoichiometric parameters resulted from these assays. Differences between the values obtained and default values proposed in ASM2d can be explained by the presence of glycogen accumulating organisms (GAOs). The calibrated model was then used to simulate results from a pilot plant. Simulation using the set of parameters obtained accurately reproduces experimental results. This paper also presents a detailed proced…

research product

Diagnosis of boron, fluorine, lead, nickel and zinc toxicity in citrus plantations in Villarreal, Spain

In the late 1980s, citrus plantations in the area of Villarreal (Spain) showed injuries similar to those previously reported for boron and fluorine toxicity. The area was affected by the disposal of industrial wastewater, mainly from ceramic industries. Conjunctive uses of surface water, groundwater and wastewater for irrigation had taken place. A survey was conducted at 25 orchards to assess leaves and soil for their boron, fluorine, lead, nickel and zinc contents. Wastewater and groundwater were also analyzed to corroborate the presence of these pollutants. The results showed that both boron and fluorine contents were greater than those reported as excess at the most part of the orchards …

research product

Assessing and modeling nitrite inhibition in microalgae-bacteria consortia for wastewater treatment by means of photo-respirometric and chlorophyll fluorescence techniques

Abstract Total nitrite (TNO2 = HNO2 + NO−2) accumulation due to the activity of ammonia-oxidizing bacteria (AOB) was monitored in microalgae-bacteria consortia, and the inhibitory effect of nitrite/free nitrous acid (NO2-N/FNA) on microalgae photosynthesis and inhibition mechanism was studied. A culture of Scenedesmus was used to run two sets of batch reactors at different pH and TNO2 concentrations to evaluate the toxic potential of NO2-N and FNA. Photo-respirometric tests showed that NO2-N accumulation has a negative impact on net oxygen production rate (OPRNET). Chlorophyll a fluorescence analysis was used to examine the biochemical effects of NO2-N stress and the mechanism of NO2-N inhi…

research product

An advanced control strategy for biological nutrient removal in continuous systems based on pH and ORP sensors

[EN] A fuzzy logic-based control system that uses low-cost sensors for controlling and optimizing the biological nitrogen removal in continuous systems has been developed. The novelty of this control system is the use of several pH, ORP, and dissolved oxygen (DO) sensors instead of on-line nitrogen sensors/analyzers. The nitrogen control system was developed and implemented in a UCT pilot plant fed with wastewater from a full-scale plant. The developed nitrification controller allows the effluent ammonium concentration to be maintained below the effluent criteria discharge with the minimum energy consumption. The denitrification process controller allows the energy consumption derived from …

research product

Real-time optimization of the key filtration parameters in an AnMBR: Urban wastewater mono-digestion vs. co-digestion with domestic food waste

[EN] This study describes a model-based method for real-time optimization of the key filtration parameters in a submerged anaerobic membrane bioreactor (AnMBR) treating urban wastewater (UWW) and UWW mixed with domestic food waste (FW). The method consists of an initial screening to find out adequate filtration conditions and a real-time optimizer applied to a periodically calibrated filtration model for minimizing the operating costs. The initial screening consists of two statistical analyses: (1) Morris screening method to identify the key filtration parameters; (2) Monte Carlo method to establish suitable initial control inputs values. The operating filtration cost after implementing the…

research product

A software for the integrated design of wastewater treatment plants

Abstract A software package has been developed for automated design of wastewater treatment plants. A user-friendly environment has been implemented to facilitate design tasks, allowing rapid evaluation of different alternatives as well as performing sensitivity analyses. Flexible treatment plant configurations can be established with preliminary, primary, biological and tertiary wastewater treatments, and sludge treatment units. A generalized steady-state model developed for biological processes is also included. The design process includes treatment units sizing, plant layout, hydraulic profile calculation and equipment assignment. The system capabilities for designing new plants and upgr…

research product

Influence of sludge age on enhanced phosphorus removal in biological systems

The phosphorus removal process was studied in a bench-scale plant for a period of 300 days. The process was observed to depend greatly on two parameters: the amount of volatile fatty acid (VFA) taken up in the anaerobic stage and sludge age. For a given sludge age, phosphorus release versus VFA uptake in the anaerobic stage could be fitted to a straight line, while phosphorus uptake in the non-anaerobic stages fitted a logarithmic curve. Thus, phosphorus removal occurred within a limited VFA uptake range. The range width and the phosphorus removal capacity varied with sludge age.

research product

Preliminary data set to assess the performance of an outdoor membrane photobioreactor

[EN] This data in brief (DIB) article is related to a Research article entitled 'Optimising an outdoor membrane photobioreactor for tertiary sewage treatment' [1]. Data related to the effect of substrate turbidity, the ammonium concentration at which the culture reaches nitrogen-deplete conditions and the microalgae growth rate under outdoor conditions is provided. Microalgae growth rates under different substrate turbidity were obtained to assess the reduction of the culture's light availability. Lab-scale experiments showed growth rates reductions of 22-44%. Respirometric tests were carried to know the limiting ammonium concentration in thismicroalgae-basedwastewater treatment system. Gro…

research product

Real-time control strategy for nitrogen removal via nitrite in a SHARON reactor using pH and ORP sensors

This paper presents a real-time control strategy for nitrogen removal via nitrite in a continuous flow SHARON reactor using on-line available and industrially feasible sensors (pH and ORP). The developed control strategy optimizes the length of aerobic and anoxic phases as well as the external carbon source addition. This strategy, implemented in a laboratory-scale SHARON reactor fed with synthetic wastewater and real dewatering sludge supernatant, was able to cope with step variations in influent flow rate and ammonium concentration. The main advantages of this control strategy over the traditional operation mode with fixed carbon source dosification and fixed length cycle operation were: …

research product

Economic and environmental sustainability of submerged anaerobic MBR-based (AnMBR-based) technology as compared to aerobic-based technologies for moderate-/high-loaded urban wastewater treatment

[EN] The objective of this study was to assess the economic and environmental sustainability of submerged anaerobic membrane bioreactors (AnMBRs) in comparison with aerobic-based technologies for moderate-/high-loaded urban wastewater (UWW) treatment. To this aim, a combined approach of steady-state performance modelling, life cycle analysis (LCA) and life cycle costing (LCC) was used, in which AnMBR (coupled with an aerobic-based post-treatment) was compared to aerobic membrane bioreactor (AeMBR) and conventional activated sludge (CAS). AnMBR with CAS-based post-treatment for nutrient removal was identified as a sustainable option for moderate-/high-loaded UWW treatment: low energy consump…

research product

Factors that affect the permeability of commercial hollow-fibre membranes in a submerged anaerobic MBR (HF-SAnMBR) system

A demonstration plant with two commercial HF ultrafiltration membrane modules (PURON (R), Koch Membrane Systems, PUR-PSH31) was operated with urban wastewater. The effect of the main operating variables on membrane performance at sub-critical and supracritical filtration conditions was tested. The physical operating variables that affected membrane performance most were gas sparging intensity and back-flush (BF) frequency. Indeed, low gas sparging intensities (around 0.23 Nm(3) h(-1) m(-2)) and low BF frequencies (30s back-flush for every 10 basic filtration relaxation cycles) were enough to enable membranes to be operated sub-critically even when levels of mixed liquor total solids were hi…

research product

Widening the applicability of AnMBR for urban wastewater treatment through PDMS membranes for dissolved methane capture: Effect of temperature and hydrodynamics.

[EN] AnMBR technology is a promising alternative to achieve future energy-efficiency and environmental-friendly urban wastewater (UWW) treatment. However, the large amount of dissolved methane lost in the effluent represents a potential high environmental impact that hinder the feasibility of this technology for full-scale applications. The use of degassing membranes (DM) to capture the dissolved methane from AnMBR effluents can be considered as an interesting alternative to solve this problem although further research is required to assess the suitability of this emerging technology. The aim of this study was to assess the effect of operating temperature and hydrodynamics on the capture of…

research product

Effect of pH, substrate and free nitrous acid concentrations on ammonium oxidation rate.

Respirometric techniques have been used to determine the effect of pH, free nitrous acid (FNA) and substrate concentration on the activity of the ammonium oxidizing bacteria (AOB) present in an activated sludge reactor. With this aim, bacterial activity has been measured at different pH values (ranging from 6.2 to 9.7), total ammonium nitrogen concentrations (ranging from 0.1 to 10 mg TAN L-1) and total nitrite concentrations (ranging from 3 to 43 mg NO2-N L-1). According to the results obtained, the most appropriate kinetic expression for the growth of AOB in activated sludge reactors has been established. Substrate half saturation constant and FNA and pH inhibition constants have been obt…

research product

A plant-wide energy model for wastewater treatment plants: application to anaerobic membrane bioreactor technology

[EN] The aim of this study is to propose a detailed and comprehensive plant-wide model for assessing the energy demand of different wastewater treatment systems (beyond the traditional activated sludge) in both steady- and unsteady-state conditions. The proposed model makes it possible to calculate power and heat requirements (W and Q, respectively), and to recover both power and heat from methane and hydrogen capture. In order to account for the effect of biological processes on heat requirements, the model has been coupled to the extended version of the BNRM2 plant-wide mathematical model, which is implemented in DESSAS simulation software. Two case studies have been evaluated to assess t…

research product

Calibration and simulation of two large wastewater treatment plants operated for nutrient removal

Control and optimisation of plant processes has become a priority for WWTP managers. The calibration and verification of a mathematical model provides an important tool for the investigation of advanced control strategies that may assist in the design or optimization of WWTPs. This paper describes the calibration of the ASM2d model for two full scale biological nitrogen and phosphorus removal plants in order to characterize the biological process and to upgrade the plants' performance. Results from simulation showed a good correspondence with experimental data demonstrating that the model and the calibrated parameters were able to predict the behaviour of both WWTPs. Once the calibration an…

research product

MAB2.0 project: Integrating algae production into wastewater treatment

Abstract Different species of microalgae are highly efficient in removing nutrients from wastewater streams and are able to grow using flue gas as a CO2 source. These features indicate that application of microalgae has a promising outlook in wastewater treatment. However, practical aspects and process of integration of algae cultivation into an existing wastewater treatment line have not been investigated. The Climate-KIC co-funded Microalgae Biorefinery 2.0 project developed and demonstrated this integration process through a case study. The purpose of this paper is to introduce this process by phases and protocols, as well as report on the challenges and bottlenecks identified in the cas…

research product

Economic and environmental sustainability of an AnMBR treating urban wastewater and organic fraction of municipal solid waste

[EN] The objective of this study was to evaluate the economic and environmental sustainability of a sub- merged anaerobic membrane bioreactor (AnMBR) treating urban wastewater (UWW) and organic fraction of municipal solid waste (OFMSW) at ambient temperature in mild/hot climates. To this aim, power requirements, energy recovery from methane (biogas methane and methane dissolved in the effluent), consumption of reagents for membrane cleaning, and sludge handling (polyelectrolyte and energy consumption) and disposal (farmland, landfilling and incineration) were evaluated within different operating scenarios. Results showed that, for the operating conditions considered in this study, AnMBR tec…

research product

Design methodology for submerged anaerobic membrane bioreactors (AnMBR): A case study

[EN] The main objective of this study is to propose guidelines for designing submerged anaerobic MBR (AnMBR) technology for municipal wastewater treatment. The design methodology was devised on the basis of simulation and experimental results from an AnMBR plant featuring industrial-scale hollow-fibre membranes. The proposed methodology aims to minimise both capital expenditure and operating expenses, and the key parameters considered were: hydraulic retention time, solids retention time, mixed liquor suspended solids concentration in the membrane tank, 20 C-standardised critical flux, specificgas demand per square metre of membrane area, and flow of sludge being recycled from the membrane …

research product

An improved sampling strategy based on trajectory design for application of the Morris method to systems with many input factors

[EN] In this paper, a revised version of the Morris approach, which includes an improved sampling strategy based on trajectory design, has been adapted to the screening of the most influential parameters of a fuzzy controller applied to WWTPs. Due to the high number of parameters, a systematic approach has been proposed to apply this improved sampling strategy with low computational demand. In order to find out the proper repetition number of elementary effects of each input factor on model output (EEi) calculations, an iterative and automatic procedure has been applied. The results show that the sampling strategy has a significant effect on the parameter significance ranking and that rando…

research product

Adsorption of Heavy Metals from Aqueous Solutions onto Activated Carbon in Single Cu and Ni Systems and in Binary Cu-Ni, Cu-Cd and Cu-Zn Systems

Single copper and nickel adsorption from aqueous solutions onto a granular activated carbon is reported. Metal removals increase on raising pH and temperature, and decrease on raising the initial metal concentration at constant carbon dose. The adsorption processes are modelled using the surface complex formation (SCF) Triple Layer Model (TLM) with an overall surface bidentate species. A dependence of the SCF constant on pH, initial molar metal/carbon ratio and temperature is observed, and a correlation for log Kads is determined. The SCF model successfully predicts copper and nickel removals in single metal solutions. Adsorption in the binary metal systems copper–nickel, copper–cadmium and…

research product

Global sensitivity and uncertainty analysis of a microalgae model for wastewater treatment.

The results of a global sensitivity and uncertainty analysis of a microalgae model applied to a Membrane Photobioreactor (MPBR) pilot plant were assessed. The main goals of this study were: (I) to identify the sensitivity factors of the model through the Morris screening method, i.e. the most influential factors; (II) to calibrate the influential factors online or offline; and (III) to assess the model's uncertainty. Four experimental periods were evaluated, which encompassed a wide range of environmental and operational conditions. Eleven influential factors (e.g. maximum specific growth rate, light intensity and maximum temperature) were identified in the model from a set of 34 kinetic pa…

research product

Effect of temperature on ammonium removal in Scenedesmus sp

The effect of temperature on microalgal ammonium uptake was investigated by carrying out four batch experiments in which a mixed culture of microalgae, composed mainly of Scenedesmus sp., was cultivated under different temperatures within the usual temperature working range in Mediterranean climate (15-34 ºC). Ammonium removal rates increased with temperature up to 26 ºC and stabilized thereafter. Ratkowsky and Cardinal Temperatures models successfully reproduced the experimental data. Optimum (31.3 ºC), minimum (8.8 ºC) and maximum (46.1 ºC) temperatures for ammonium removal by Scenedesmus sp. under the studied conditions were obtained as model parameters. These temperature-related paramet…

research product

Effect of pH and HNO2 concentration on the activity of ammonia-oxidizing bacteria in a partial nitritation reactor

Ammonia-oxidizing bacteria (AOB) are very sensitive to environmental conditions and wastewater treatment plant operational parameters. One of the most important factors affecting their activity is pH. Its effect is associated with: NH3/NH4 þ and HNO2/NO2 chemical equilibriums and biological reaction rates. The aim of this study was to quantify and model the effect of pH and free nitrous acid (FNA) concentration on the activity of AOB present in a lab-scale partial nitritation reactor. For this purpose, two sets of batch experiments were carried out using biomass from this reactor. Fluorescent in situ hybridization analysis showed that Nitrosomona eutropha and Nitrosomona europaea species we…

research product

Global sensitivity analysis of a filtration model for submerged anaerobic membrane bioreactors (AnMBR)

The results of a global sensitivity analysis of a filtration model for submerged anaerobic MBRs (AnMBRs) are assessed in this paper. This study aimed to (1) identify the less- (or non-) influential factors of the model in order to facilitate model calibration and (2) validate the modelling approach (i.e. to determine the need for each of the proposed factors to be included in the model). The sensitivity analysis was conducted using a revised version of the Morris screening method. The dynamic simulations were conducted using long-term data obtained from an AnMBR plant fitted with industrial-scale hollow-fibre membranes. Of the 14 factors in the model, six were identified as influential, i.e…

research product

Performance of an outdoor membrane photobioreactor for resource recovery from anaerobically treated sewage

[EN] The objective of this work was to evaluate the performance of a pilot scale membrane photobioreactor (MPBR) for treating the effluent of an anaerobic membrane bioreactor (AnMBR) system. In particular, new experimental data on microalgae productivity, nutrient recovery, CO2 biofixation and energy recovery potential was obtained under different operating conditions, which would facilitate moving towards cost-effective microalgae cultivation on wastewater. To this aim, a 2.2-m(3) MPBR equipped with two commercial-scale hollow-fibre ultrafiltration membrane modules was operated treating the nutrient-loaded effluent from an AnMBR for sewage treatment. The influence of several design, enviro…

research product

Nitrogen recovery using a membrane contactor: Modelling nitrogen and pH evolution

[EN] A hollow fibre membrane contactor has been applied for nitrogen recovery from anaerobic digestion supernatant at different operating conditions obtaining nitrogen recovery efficiencies over 99 %. A mathematical model able to represent the time evolution of pH and nitrogen concentration during the recovery process is presented in this paper. The developed model accurately reproduced the results obtained in 26 experiments carried out at different pH values (from 9 to 11), temperatures (from 25 to 35 degrees C), membrane surfaces (from 1.2 to 2.4 m(2)) and feed flow rates (from 0.33 x 10(-5) to 5.83 x 10(-5) m(3)/s) predicting the variations in nitrogen recovery rates measured at the diff…

research product

Methane recovery efficiency in a submerged anaerobic membrane bioreactor (SAnMBR) treating sulphate-rich urban wastewater: Evaluation of methane losses with the effluent

The present paper presents a submerged anaerobic membrane bioreactor (SAnMBR) as a sustainable approach for urban wastewater treatment at 33 and 20 C, since greenhouse gas emissions are reduced and energy recovery is enhanced. Compared to other anaerobic systems, such as UASB reactors, the membrane technology allows the use of biogas-assisted mixing which enhances the methane stripping from the liquid phase bulk. The methane saturation index obtained for the whole period (1.00 ± 0.04) evidenced that the equilibrium condition was reached and the methane loss with the effluent was reduced. The methane recovery efficiency obtained at 20 C (53.6%) was slightly lower than at 33 C (57.4%) due to …

research product

PDMS membranes for feasible recovery of dissolved methane from AnMBR effluents

[EN] This study aimed to evaluate the feasibility of degassing membrane (DM) technology for recovering dissolved methane from AnMBR effluents. For that purpose, a PDMS membrane module was operated for treating the effluent from an AnMBR prototype-plant, which treated urban wastewater (UWW) at ambient temperature. Different transmembrane pressures and liquid flow rates were applied for evaluating methane recovery efficiency. Maximum methane recoveries were achieved when increasing the vacuum pressure and reducing the liquid flow rate, reaching a maximum methane recovery efficiency of around 80% at a transmembrane pressure (TMP) of 0.8 bars and a treatment flow rate (Q(L)) of 50 L h(-1). The …

research product

The operating cost of an anaerobic membrane bioreactor (AnMBR) treating sulphate-rich urban wastewater

The objective of this study was to evaluate the operating cost of an anaerobic membrane bioreactor (AnMBR) treating sulphate-rich urban wastewater (UWW) at ambient temperature (ranging from 17 to 33 degrees C). To this aim, energy consumption, methane production, and sludge handling and recycling to land were evaluated. The results revealed that optimising specific gas demand with respect to permeate volume (SGDp) and sludge retention time (for given ambient temperature conditions) is essential to maximise energy savings (minimum energy demand: 0.07 kW h m(-3)). Moreover, low/moderate sludge productions were obtained (minimum value: 0.16 kg TSS kg(-1) CODRemoved), which further enhanced the…

research product

Optimum design and operation of primary sludge fermentation schemes for volatile fatty acids production.

This paper presents a model-knowledge based algorithm for optimising the primary sludge fermentation process design and operation. This is a recently used method to obtain the volatile fatty acids (VFA), needed to improve biological nutrient removal processes, directly from the raw wastewater. The proposed algorithm consists in a heuristic reasoning algorithm based on the expert knowledge of the process. Only effluent VFA and the sludge blanket height (SBH) have to be set as design criteria, and the optimisation algorithm obtains the minimum return sludge and waste sludge flow rates which fulfil those design criteria. A pilot plant fed with municipal raw wastewater was operated in order to …

research product

Outdoor microalgae-based urban wastewater treatment: recent advances, applications and future perspectives

[EN] Although microalgae-based wastewater treatment has been traditionally carried out in extensive waste stabilization ponds, recent trends focus on the use of microalgae to apply the circular economy principles in the wastewater treatment sector due to the capacity of algae to absorb carbon dioxide while recovering nutrients from sewage. To this aim, the development of new intensive microalgae-based systems with higher efficiency and level of process control is required. Results obtained for these systems at lab scale are generally promising. However, upscaling to outdoor conditions is often uncertain. Some advances have been made in terms of applying open systems at large scale. However,…

research product

Sub-critical filtration conditions of commercial hollow-fibre membranes in a submerged anaerobic MBR (HF-SAnMBR) system: The effect of gas sparging intensity

A submerged anaerobic MBR demonstration plant with two commercial hollow-fibre ultrafiltration systems (PURON®, Koch Membrane Systems, PUR-PSH31) was operated using municipal wastewater at high levels of mixed liquor total solids (MLTS) (above 22gL -1). A modified flux-step method was applied to assess the critical flux (J C) at different gas sparging intensities. The results showed a linear dependency between J C and the specific gas demand per unit of membrane area (SGD m). J C ranged from 12 to 19LMH at SGD m values of between 0.17 and 0.5Nm 3h -1m -2, which are quite low in comparison to aerobic MBR. Long-term trials showed that the membranes operated steadily at fluxes close to the est…

research product

Fermentation and elutriation of primary sludge: Effect of SRT on process performance

Abstract A primary sludge fermentation–elutriation pilot plant was operated using in-line and side-stream schemes. The influence of solids retention time, recirculation sludge flow-rate and solids concentration on the fermentation–elutriation process performance has been assessed in this paper. The use of high elutriation flows (12% of influent flow) improved the volatile fatty acids (VFA) concentration in the effluent stream. Suspended solids removal efficiency decreased in the primary settler when the solids retention time (SRT) was increased from 4 to 8 days. Disintegration step during hydrolysis process was pointed out as the main reason for that decrease. Maximum VFA productions were a…

research product

Water resource recovery by means of microalgae cultivation in outdoor photobioreactors using the effluent from an anaerobic membrane bioreactor fed with pre-treated sewage.

[EN] With the aim of assessing the potential of microalgae cultivation for water resource recovery (WRR), the performance of three 0.55 m3 flat-plate photobioreactors (PBRs) was evaluated in terms of nutrient removal rate (NRR) and biomass production. The PBRs were operated outdoor (at ambient temperature and light intensity) using as growth media the nutrient-rich effluent from an AnMBR fed with pre-treated sewage. Solar irradiance was the most determining factor affecting NRR. Biomass productivity was significantly affected by temperatures below 20 °C. The maximum biomass productivity (52.3 mg VSS·L−1·d−1) and NRR (5.84 mg NH4-N·L−1·d−1 and 0.85 mg PO4-P·L−1·…

research product

Advanced control system for optimal filtration in submerged anaerobic MBRs (SAnMBRs)

The main aim of this study was to develop an advanced controller to optimise filtration in submerged anaerobic MBRs (SAnMBRs). The proposed controller was developed, calibrated and validated in a SAnMBR demonstration plant fitted with industrial-scale hollow-fibre membranes with variable influent flow and load. This 2-layer control system is designed for membranes operating sub-critically and features a lower layer (on/off and PID controllers) and an upper layer (knowledge-based controller). The upper layer consists of a MIMO (multiple-input-multiple-output) control structure that regulates the gas sparging for membrane scouring and the frequency of physical cleaning (ventilation and back f…

research product

Anaerobic membrane bioreactors (AnMBR) treating urban wastewater in mild climates

[EN] Feasibility of an AnMBR demonstration plant treating urban wastewater (UWW) at temperatures around 25-30 degrees C was assessed during a 350-day experimental period. The plant was fed with the effluent from the pretreatment of a full-scale municipal WWTP, characterized by high COD and sulfate concentrations. Biodegradability of the UWW reached values up to 87%, although a portion of the biodegradable COD was consumed by sulfate reducing organisms. Effluent COD remained below effluent discharge limits, achieving COD removals above 90%. System operation resulted in a reduction of sludge production of 36-58% compared to theoretical aerobic sludge productions. The membranes were operated a…

research product

A supervisory control system for optimising nitrogen removal and aeration energy consumption in wastewater treatment plants

A fuzzy logic supervisory control system for optimising nitrogen removal and aeration energy consumption has been developed. This control system allows optimising and controlling the dissolved oxygen (DO) concentration in the aerobic reactors, the blowers discharge pressure and the effluent ammonia and nitrate concentrations. DO is controlled by adjusting control valve opening and blower discharge pressure is controlled by modifying rotational speed of the blowers. Optimum nitrification/denitrification is achieved by modifying the DO set point in the last aerobic reactor and the internal recirculation. This system has been tested by simulation in a Bardenpho process using the Activated Slud…

research product

Multivariate SPC of a sequencing batch reactor for wastewater treatment

Data from a sequencing batch reactor (SBR) operated for enhanced biological phosphorus removal from wastewater have been analysed in order to propose an efficient MSPC scheme of the process. Different multivariate bilinear approaches have been applied and compared in terms of their capabilities for on-line and off-line fault detection and diagnosis. The typical three-way data structure from a batch process was unfolded batch-wise and variable-wise. In the latter case, two models were built: with (AT) and without (WKFH) removing the main non-linear behaviour of the process data. Since the process consists of several stages, the monitoring strategies tested include: one model for all stages a…

research product

Biological Nutrient Removal Model No. 2 (BNRM2): a general model for wastewater treatment plants

This paper presents the plant-wide model Biological Nutrient Removal Model No. 2 (BNRM2). Since nitrite was not considered in the BNRM1, and this previous model also failed to accurately simulate the anaerobic digestion because precipitation processes were not considered, an extension of BNRM1 has been developed. This extension comprises all the components and processes required to simulate nitrogen removal via nitrite and the formation of the solids most likely to precipitate in anaerobic digesters. The solids considered in BNRM2 are: struvite, amorphous calcium phosphate, hidroxyapatite, newberite, vivianite, strengite, variscite, and calcium carbonate. With regard to nitrogen removal via…

research product

Kinetic modeling of autotrophic microalgae mainline processes for sewage treatment in phosphorus-replete and -deplete culture conditions

[EN] A kinetic model of autotrophic microalgal growth in sewage was developed to determine the biokinetic processes involved, including carbon-, nitrogen- and phosphorus-limited microalgal growth, dependence on light intensity, temperature and pH, light attenuation and gas exchange to the atmosphere. A new feature was the differentiation between two metabolic pathways of phosphorus consumption according to the availability of extracellular phosphorus. Two scenarios were differentiated: phosphorus-replete and -deplete culture conditions. In the former, the microalgae absorbed phosphorus to grow and store polyphosphate. In the latter the microalgae used the stored polyphosphate as a phosphoru…

research product

A filtration model applied to submerged anaerobic MBRs (SAnMBRs)

The aim of this study was to develop a model able to correctly reproduce the filtration process of submerged anaerobic MBRs (SAnMBRs). The proposed model was calibrated and validated in a SAnMBR demonstration plant fitted with industrial-scale hollow-fibre membranes. Three suspended components were contemplated in the model: total solids concentration; dry mass of cake on the membrane surface; and dry mass of irreversible fouling on the membrane surface. The model addressed the following physical processes: the build-up and compression of the cake layer during filtration; cake layer removal using biogas sparging to scour the membrane; cake layer removal during back-flushing; and the consoli…

research product

Continuous 3-year outdoor operation of a flat-panel membrane photobioreactor to treat effluent from an anaerobic membrane bioreactor

[EN] A membrane photobioreactor (MPBR) plant was operated continuously for 3 years to evaluate the separate effects of different factors, including: biomass and hydraulic retention times (BRT, HRT), light path (Lp), nitrification rate (NOxR), nutrient loading rates (NLR, PLR) and others. The overall effect of all these parameters which influence MPBR performance had not previously been assessed. The multivariate projection approach chosen for this study provided a good description of the collected data and facilitated their visualisation and interpretation. Forty variables used to control and assess MPBR performance were evaluated during three years of continuous outdoor operation by means …

research product

Modelling of an activated primary settling tank including the fermentation process and VFA elutriation

A complete model of a primary settler including both sedimentation and biological processes is presented. It is a one-dimensional model based on the solids flux concept and the conservation of mass that uses the Takács model for the settling velocity, which is corrected by a compression function in the lower layers. The biological model is based on the ASM2 and enlarged with the fermentation model proposed by this research group. The settler was split in ten layers and the flux terms in the mass balance for each layer is obtained by means of the settling model. A pilot plant has been operated to study the primary sludge fermentation and volatile fatty acids (VFA) elutriation in a primary se…

research product

Effect of intracellular P content on phosphate removal in Scenedesmus sp. Experimental study and kinetic expression

The present work determines the effect of phosphorus content on phosphate uptake rate in a mixed culture of Chlorophyceae in which the genus Scenedesmus dominates. Phosphate uptake rate was determined in eighteen laboratory batch experiments, with samples taken from a progressively more P-starved culture in which a minimum P content of 0.11% (w/w) was achieved. The results obtained showed that the higher the internal biomass P content, the lower the phosphate removal rate. The highest specific phosphate removal rate was 6.5 mgPO4 P gTSS -1 h -1 . Microalgae with a P content around 1% (w/w) attained 10% of this highest removal rate, whereas those with a P content of 0.6% (w/w) presented 50% …

research product

Modeling the anaerobic treatment of sulfate rich urban wastewater. Application to AnMBR technology

[EN] Although anaerobic membrane bioreactors (AnMBR) are a core technology in the transition of urban wastewater (UWW) treatment towards a circular economy, the transition is being held back by a number of bottlenecks. The dissolved methane released from the effluent, the need to remove nutrients (ideally by recovery), or the energy lost by the competition between methanogenic and sulfate-reducing bacteria (SRB) for the biodegradable COD have been identified as the main issues to be addressed before AnMBR becomes widespread. Mathematical modeling of this technology can be used to obtain further insights into these bottlenecks plus other valuable information for design, simulation and contro…

research product

Control of activated sludge settleability using preaeration and preprecipitation

This paper deals with the addition of a preaeration and a preprecipitation stage to a conventional activated sludge process. The experiments were carried out in a pilot plant using wastewater from the city of Valencia (Spain) as feed. The effect of the F/M ratio and sludge age on sludge settleability was established. In both cases, process stability was observed to increase with respect to the conventional process. Good sludge settleability was thus assured in a greater F/M ratio range. A comparative economic study was also carried out.

research product

Use of rumen microorganisms to boost the anaerobic biodegradability of microalgae

[EN] A laboratory bioreactor using rumen microorganisms to treat Scenedesmus spp. biomass was operated for 190 days. At first the bioreactor operated as a Rumen-like Fermenter (RF) with a Sludge Retention Time (SRT) of 7 days. The RF was subsequently transformed into an anaerobic digestion system including two configurations: continuously-stirred tank reactor and anaerobic membrane bioreactor in which different SRT values of up to 100 days were assessed. Methane production peaked at 214 mL CH4 g−1 CODIn with a SRT of 100 days. COD removal and BDP peaked at above 70% and 60%, respectively, at the highest SRT, with no pre-treatment prior to microalgae digestion. The waste sludge product…

research product

Effect of pH and nitrite concentration on nitrite oxidation rate

The effect of pH and nitrite concentration on the activity of the nitrite oxidizing bacteria (NOB) in an activated sludge reactor has been determined by means of laboratory batch experiments based on respirometric techniques. The bacterial activity was measured at different pH and at different total nitrite concentrations (TNO 2). The experimental results showed that the nitrite oxidation rate (NOR) depends on the TNO 2 concentration independently of the free nitrous acid (FNA) concentration, so FNA cannot be considered as the real substrate for NOB. NOB were strongly affected by low pH values (no activity was detected at pH 6.5) but no inhibition was observed at high pH values (activity wa…

research product

Anaerobic treatment of urban wastewater in membrane bioreactors: evaluation of seasonal temperature variations

The objective of this study was to evaluate the effect of seasonal temperature variations on the anaerobic treatment of urban wastewater in membrane bioreactors (MBRs). To this aim, sludge production, energy recovery potential, chemical oxygen demand (COD) removal and membrane permeability were evaluated in a submerged anaerobic MBR fitted with industrial-scale membrane units. The plant was operated for 172 days, between summer and winter seasons. Sludge production increased and energy recovery potential decreased when temperature decreased. COD removal and membrane permeability remained nearby stable throughout the whole experimental period.

research product

Model-based automatic tuning of a filtration control system for submerged anaerobic membrane bioreactors (AnMBR)

This paper describes a model-based method to optimise filtration in submerged AnMBRs. The method is applied to an advanced knowledge-based control system and considers three statistical methods: (1) sensitivity analysis (Morris screening method) to identify an input subset for the advanced controller; (2) Monte Carlo method (trajectory-based random sampling) to find suitable initial values for the control inputs; and (3) optimisation algorithm (performing as a supervisory controller) to re-calibrate these control inputs in order to minimise plant operating costs. The model-based supervisory controller proposed allowed filtration to be optimised with low computational demands (about 5min). E…

research product

Optimisation of sludge line management to enhance phosphorus recovery in WWTP

The management of the sludge treatment line can be optimized to reduce uncontrolled phosphorus precipitation in the anaerobic digester and to enhance phosphorus recovery in WWTP. In this paper, four operational strategies, which are based on the handling of the prefermented primary sludge and the secondary sludge from an EBPR process, have been tested in a pilot plant. The separated or mixed sludge thickening, the use of a stirred contact tank and the elutriation of the thickened sludge are the main strategies studied. Both the reduction of phosphorus precipitation in the digester and the supernatant suitability for a struvite crystallization process were assessed in each configuration. The…

research product

Environmental impact of submerged anaerobic MBR (SAnMBR) technology used to treat urban wastewater at different temperatures

[EN] The objective of this study was to assess the environmental impact of a submerged anaerobic MBR (SAnMBR) system in the treatment of urban wastewater at different temperatures: ambient temperature (20 and 33 degrees C), and a controlled temperature (33 degrees C). To this end, an overall energy balance (OEB) and life cycle assessment (LCA), both based on real process data, were carried out. Four factors were considered in this study; (1) energy consumption during wastewater treatment; (2) energy recovered from biogas capture; (3) potential recovery of nutrients from the final effluent; and (4) sludge disposal. The OEB and LCA showed SAnMBR to be a promising technology for treating urban…

research product

Designing an AnMBR-based WWTP for energy recovery from urban wastewater: The role of primary settling and anaerobic digestion

The main objective of this paper is to assess different treatment schemes for designing a submerged anaerobic membrane bioreactor (AnMBR) based WWTP. The economic impact of including a primary settling (PS) stage and further anaerobic digestion (AD) of the wasted sludge has been evaluated. The following operating scenarios were considered: sulphate-rich and low-sulphate urban wastewater (UWW) treatment at 15 and 30 ºC. To this aim, the optimum combination of design/operating parameters that resulted in minimum total cost (CAPEX plus OPEX) for the different schemes and scenarios was determined. The AnMBR design was based on both simulation and experimental results from an AnMBR plant featuri…

research product

Precipitation assessment in wastewater treatment plants operated for biological nutrient removal: a case study in Murcia, Spain.

The Murcia Este Wastewater Treatment Plant is the largest wastewater treatment plant in Murcia (Spain). The plant operators have continuously found pipe blockage and accumulation of solids on equipment surfaces during the anaerobic digestion and post-digestion processes. This work studies the precipitation problems in the Murcia Este Wastewater Treatment Plant in order to locate the sources of precipitation and its causes from an exhaustive mass balance analysis. The DAF thickener and anaerobic digester mass balances suggest that most of the polyphosphate is released during excess sludge thickening. Despite the high concentrations achieved in the thickened sludge, precipitation does not occ…

research product

On-line monitoring of photosynthetic activity based on pH data to assess microalgae cultivation

[EN] Microalgae performance of outdoor cultivation systems is influenced by environmental and operating dynamics. Monitoring and control systems are needed to maximise biomass productivity and nutrient recovery. The goal of this work was to corroborate that pH data could be used to monitor microalgae performance by means of data from an outdoor membrane photobioreactor (MPBR) plant. In this system, microalgae photosynthetic activity was favoured over other physical and biological processes, so that the pH data dynamics was theoretically related to the microalgae carbon uptake rate (CUR). Shortand long-term continuous operations were tested to corroborate the relationship between the first d…

research product

Effect of light intensity, light duration and photoperiods in the performance of an outdoor photobioreactor for urban wastewater treatment

[EN] A series of eight experiments were carried out to analyse the effects of light intensity, light duration and photoperiods on a microalgae culture for treating AnMBR effluent at an outdoor photobioreactor (PBR) plant. Improved performance was achieved in terms of nutrient recovery rates, biomass productivity and effluent nutrient concentrations at a higher net photon flux. However, the higher irradiance was also responsible for lower biomass productivity:light irradiance ratios. None of the experiments with different lighting regimes and the same net photon flux showed any significant differences. The data obtained suggest that microalgae performance in this system did not depend on the…

research product

Study of the factors affecting activated sludge settling in domestic wastewater treatment plants

A study has been made of the influence of the process parameters on the settling characteristics of sludge in domestic wastewater treatment plants. The experiments were conducted at a pilot plant situated at the Wastewater Treatment Plant of Valencia, Spain (1,000,000 inhabitants). The influent to the pilot plant was the same as that of the plant. It was found that F/M ratios in the range of 0.25-0.60 g DBO5/g MLVSS day produce values of SVI representative of good settleability of the sludge. Values of sulphide concentration in the influent above 1.0 mg/l negatively affect the process, causing bulking and floating sludge. High values of fats were found to have no influence on the SVI, but d…

research product

Biological nutrient removal model No.1 (BNRM1)

This paper presents the results of the work carried out by the CALAGUA Group on Mathematical Modelling of Biological Treatment Processes: the Biological Nutrient Removal Model No.1. This model is based on a new concept for dynamic simulation of wastewater treatment plants: a unique model can be used to design, simulate and optimize the whole plant, as it includes most of the biological and physico-chemical processes taking place in all treatment operations. The physical processes included are: settling and clarification processes (flocculated settling, hindered settling and thickening), volatile fatty acids elutriation and gasÐliquid transfer. The chemical interactions included comprise aci…

research product

Energy saving in the aeration process by fuzzy logic control

An aeration fuzzy logic based control system has been developed and tested in the main aerobic reactor of a BARDENPHO process pilot plant. This system has been compared with two ordinary aeration process controllers: one- and two-aeration-level on/off controllers. Energy savings of about 40% over the one-level on/off controller and a more stable closed-loop response have been obtained. Thus, an improvement of about 60% in average deviation can be accomplished by the use of an AFLBC.

research product

Sub-critical long-term operation of industrial scale hollow-fibre membranes in a submerged anaerobic MBR (HF-SAnMBR) system

The aim of this study was to evaluate the long-term performance of hollow-fibre (HF) membranes used to treat urban wastewater in a submerged anaerobic MBR when operating sub-critically. To this end, a demonstration plant with two industrial scale HF ultrafiltration membrane modules was operated under different conditions. The main factor affecting membrane performance was the concentration of mixed liquor total solids (MLTS). The reversible fouling rate remained low even when MLTS levels (about 25 g L−1) in the membrane tank were high. No chemical cleaning was conducted whilst operating the plant for more than one year because no irreversible fouling problems were detected. The almost compl…

research product

Identification and quantification of microbial populations in activated sludge and anaerobic digestion processes

Eight different phenotypes were studied in an activated sludge process (AeR) and anaerobic digester AnD) in a full-scale wastewater treatment plant by means of fluorescent in situ hybridization (FISH) and automated FISH quantification software. The phenotypes were ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, denitrifying bacteria, phosphate-accumulating organisms (PAO), glycogen-accumulating organisms (GAO), sulphate-reducing bacteria (SRB), methanotrophic bacteria and methanogenic archaea. Some findings were unexpected: (a) Presence of PAO, GAO and denitrifiers in the AeR possibly due to unexpected environmental conditions caused by oxygen deficiencies or its ability to survive …

research product

Understanding the performance of an AnMBR treating urban wastewater and food waste via model simulation and characterization of the microbial population dynamics

[EN] An anaerobic membrane bioreactor (AnMBR) pilot plant treating kitchen food waste (FW) jointly with urban wastewater was run for 536 days. Different operational conditions were tested varying the sludge retention time (SRT), the hydraulic retention time (HRT) and the penetration factor (PF) of food waste disposers. COD removal efficiency exceeded 90% in all tested conditions. The joint treatment resulted in an almost 3-fold increase in methane production (at 70 days of SRT, 24 h HRT and 80% PF) in comparison with the treatment of urban wastewater only. Mathematical model simulations and Illumina technology were used to obtain in-depth information of this outstanding process performance.…

research product

Comparison of different predictive models for nutrient estimation in a sequencing batch reactor for wastewater treatment

Abstract In this paper different predictive models for nutrient estimation in a sequencing batch reactor (SBR) for wastewater treatment are compared: principal component regression (PCR), partial least squares (PLS), and artificial neural networks (ANNs). Two unfolding procedures were used: batch-wise and variable-wise. For the latter unfolding method, X and Y matrix augmentation with lagged variables were used in some models to incorporate process dynamics. The results have shown that batch-wise unfolding PLS models outperform the other approaches. The ANN models are good predictive models, but in this particular case-study, they do not outperform those multivariate projection models that …

research product

Struvite precipitation assessment in anaerobic digestion processes

Struvite precipitation causes important operational problems during the sludge treatment process, especially when EBPR sludge is treated. Predicting struvite formation is critical to be able to design process alternative that best minimises struvite precipitation. With this aim, phosphorus precipitation in an anaerobic digestion pilot plant was studied using experimental data and mass balance analysis. The results obtained showed significant phosphorus precipitation as struvite (58% of the fixed phosphorus) and a low precipitation of calcium phosphates (15%), forming mainly hydroxyapatite (HAP). The rest of the phosphorus fixed in the digester (27%) was attributed to adsorption processes on…

research product

Dataset to assess the shadow effect of an outdoor microalgae culture

[EN] This data in brief (DIB) article is related to a Research article [1]. Microalgae biomass absorb the light photons that are supplied to the culture, reducing the light availability in the inner parts of the photobioreactors. This is known as self-shading or shadow effect. This effect has been widely studied in lab conditions, but information about self-shading in outdoor photobioreactors is scarce. How this shadow effect affects the light availability in an outdoor photobioreactor was evaluated. In addition, advantages and disadvantages of different artificial light sources which can overcome light limitation are described.

research product

Instrumentation, control, and automation for submerged anaerobic membrane bioreactors

A submerged anaerobic membrane bioreactor (AnMBR) demonstration plant with two commercial hollow-fibre ultrafiltration systems (PURON® , Koch Membrane Systems, PUR-PSH31) was designed and operated for urban wastewater treatment. An instrumentation, control, and automation (ICA) system was designed and implemented for proper process performance. Several single-input-single-output (SISO) feedback control loops based on conventional on off and PID algorithms were implemented to control the following operating variables: flow-rates (influent, permeate, sludge recycling and wasting, and recycled biogas through both reactor and membrane tanks), sludge wasting volume, temperature, transmembrane pr…

research product

Obtención de los principales parámetros del agua residual urbana empleados en los modelos matemáticos de fangos activados a partir de una caracterización analítica simple

El tratamiento de las aguas residuales se ha realizado en España mediante procesos biológicos como el comúnmente utilizado de fangos activados. Estos procesos han sido descritos mediante modelos matemáticos que describen la eliminación de los contaminantes presentes en el agua (materia orgánica, nitrógeno y fósforo). La utilización de estos modelos requiere de una caracterización detallada de los contaminantes presentes en el agua residual urbana (ARU). La caracterización de un ARU es clave para el uso de estos modelos de simulación, tanto en el diseño como en la simulación de las Estaciones Depuradoras de Aguas Residuales (EDAR). Este trabajo ha utilizado y considerado los parámetros propu…

research product

Nonlinear control of an activated sludge aeration process: use of fuzzy techniques for tuning PID controllers

In this paper, several tuning algorithms, specifically ITAE, IMC and Cohen and Coon, were applied in order to tune an activated sludge aeration PID controller. Performance results of these controllers were compared by simulation with those obtained by using a nonlinear fuzzy PID controller. In order to design this controller, a trial and error procedure was used to determine, as a function of error at current time and at a previous time, sets of parameters (including controller gain, integral time and derivative time) which achieve satisfactory response of a PID controller actuating over the aeration process. Once these sets of data were obtained, neural networks were used to obtain fuzzy m…

research product

Modelling biological and chemically induced precipitation of calcium phosphate in enhanced biological phosphorus removal systems

The biologically induced precipitation processes can be important in wastewater treatment, in particular treating raw wastewater with high calcium concentration combined with Enhanced Biological Phosphorus Removal. Currently, there is little information and experience in modelling jointly biological and chemical processes. This paper presents a calcium phosphate precipitation model and its inclusion in the Activated Sludge Model No 2d (ASM2d). The proposed precipitation model considers that aqueous phase reactions quickly achieve the chemical equilibrium and that aqueous-solid change is kinetically governed. The model was calibrated using data from four experiments in a Sequencing Batch Rea…

research product

Microalgae-bacteria consortia in high-rate ponds for treating urban wastewater: Elucidating the key state indicators under dynamic conditions

[EN] On-line performance indicators of a microalgae-bacteria consortium were screened out from different variables based on pH and dissolved oxygen on-line measurements via multivariate projection analysis, aiming at finding on-line key state indicators to easily monitor the process. To fulfil this objective, a pilot-scale high-rate pond for urban wastewater treatment was evaluated under highly variable conditions, i.e. during the start-up period. The system was started-up without seed of either bacterial or microalgal biomass. It took around 19 days to fully develop a microalgal community assimilating nutrients significantly. Slight increases in the biomass productivities in days 26-30 sug…

research product

A systematic approach for fine-tuning of fuzzy controllers applied to WWTPs

A systematic approach for fine-tuning fuzzy controllers has been developed and evaluated for an aeration control system implemented in a WWTP. The challenge with the application of fuzzy controllers to WWTPs is simply that they contain many parameters, which need to be adjusted for different WWTP applications. To this end, a methodology based on model simulations is used that employs three statistical methods: (i) Monte-Carlo procedure: to find proper initial conditions, (ii) Identifiability analysis: to find an identifiable parameter subset of the fuzzy controller and (iii) minimization algorithm: to fine-tune the identifiable parameter subset of the controller. Indeed, the initial locatio…

research product

P-recovery in a pilot-scale struvite crystallisation reactor for source separated urine systems using seawater and magnesium chloride as magnesium sources

[EN] Practical recovery of a non-renewable nutrient, such as phosphorus (P), is essential to support modern agriculture in the near future. The high P content of urine, makes it an attractive source for practicing the recovery of this crucial nutrient. This paper presents the experimental results at pilot-plant scale of struvite crystallisation from a source-separated urine stream using two different magnesium sources, namely magnesium chloride and seawater. The latter was chosen as sustainable option to perform P-recovery in coastal areas. Real seawater was used to assess in a more realistic way its efficiency to precipitate P as struvite, since its composition (with noticeable concentrati…

research product