0000000000006561
AUTHOR
Mary L. Disis
Dendritic Cells Lose Ability to Present Protein Antigen after Stimulating Antigen-Specific T Cell Responses, despite Upregulation of MHC Class II Expression
Abstract Immature dendritic cells (DC) take up, process and present protein antigens; mature DC are specialized for stimulating primary T cell responses with increased expression of MHC class II and co-stimulatory molecules, but are incapable of processing and presenting soluble protein. The current study examined whether maturation of DC is triggered by T cell recognition of antigens presented by immature DC. Human DC derived from CD34+ progenitor cells by culture with granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-6 (IL-6) in serum-free medium could prime naive CD4+ T cells to keyhole limpet hemocyanin (KLH) and ovalbumin (OVA). The cultured DC retained the abil…
In Vitro Priming to Tumor-Associated Proteins
Cancer can be cured in mice by adoptive transfer of T cells specific for the malignant cells or by vaccination to tumor-specific antigens. The application of immunotherapy to the treatment of human cancer hinges on the identification of human tumor antigens to which specific immunity can be elicited.
Recommendations from the iSBTc-SITC/FDA/NCI Workshop on Immunotherapy Biomarkers
Abstract Purpose: To facilitate development of innovative immunotherapy approaches, especially for treatment concepts exploiting the potential benefits of personalized therapy, there is a need to develop and validate tools to identify patients who can benefit from immunotherapy. Despite substantial effort, we do not yet know which parameters of antitumor immunity to measure and which assays are optimal for those measurements. Experimental Design: The iSBTc-SITC (International Society for Biological Therapy of Cancer-Society for Immunotherapy of Cancer), FDA (Food and Drug Administration), and NCI (National Cancer Institute) partnered to address these issues for immunotherapy of cancer. Here…