0000000000006805

AUTHOR

Jingsheng Chen

showing 4 related works from this author

Thickness dependence of anomalous Hall conductivity in L10-FePt thin film

2019

L10 ordered alloys are ideal models for studying the anomalous Hall effect (AHE), which can be used to distinguish the origin from intrinsic (from band structure) or from extrinsic effects (from impurity scatterings). In the bulk limit of L10 ordered FePt films, the AHE is considered to be dominated by the intrinsic contribution, which mainly comes from the strong spin-orbit interaction (SOI) of Pt atoms and exchange-splitting of Fe atoms. The study of anomalous Hall conductivity (AHC) of L10-FePt thin films is of particular interest for its application in spintronic devices. In order to reduce the effects of defects such as grain boundaries, we chose SrTiO3 as the substrate which has a ver…

Materials scienceAcoustics and UltrasonicsPhonon scatteringCondensed matter physicsSpintronics02 engineering and technologySpin–orbit interaction021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsHall effect0103 physical sciencesGrain boundaryBerry connection and curvatureThin film010306 general physics0210 nano-technologyElectronic band structureJournal of Physics D: Applied Physics
researchProduct

Spin and Orbital Magnetic Moments of FePt Thin Films

2006

The magnetic moments of disordered and ordered L10 Fe50Pt50 films were investigated using magnetic circular dichroism (MCD) and spin polarized full relativistic Korringa–Kohn–Rostoker (SPRKKR) calculations. The measurements showed that the spin magnetic moments of Fe in both ordered and disordered films were similar with a lower value than that obtained by SPRKKR calculations. Both films however showed larger orbital moments of Fe compared to the calculations. It is suggested that the spin magnetic moment of Fe in FePt thin films was insensitive to L10 ordering.

PhysicsPhysics and Astronomy (miscellaneous)Magnetic momentSpin polarizationCondensed matter physicsMagnetic circular dichroismGeneral EngineeringGeneral Physics and AstronomyMagnetocrystalline anisotropyElectron magnetic dipole momentSpin magnetic momentCondensed Matter::Materials ScienceX-ray magnetic circular dichroismSpin (physics)Japanese Journal of Applied Physics
researchProduct

Electrical switching of perpendicular magnetization in a single ferromagnetic layer

2020

We report on the efficient spin-orbit torque (SOT) switching in a single ferromagnetic layer induced by a new type of inversion asymmetry, the composition gradient. The SOT of 6- to 60-nm epitaxial FePt thin films with a $L{1}_{0}$ phase is investigated. The magnetization of the FePt single layer can be reversibly switched by applying electrical current with a moderate current density. Different from previously reported SOTs which either decreases with or does not change with the film thickness, the SOT in FePt increases with the film thickness. We found the SOT in FePt can be attributed to the composition gradient along the film normal direction. A linear correlation between the SOT and th…

Materials scienceCondensed matter physicsSpintronics02 engineering and technology021001 nanoscience & nanotechnologyEpitaxy01 natural sciencesMagnetizationFerromagnetismPhase (matter)0103 physical sciencesThin film010306 general physics0210 nano-technologyLayer (electronics)Current densityPhysical Review B
researchProduct

Field dependence of spin and orbital moments of Fe in L10 FePt magnetic thin films

2006

Abstract The field dependence of spin and orbital magnetic moments of Fe in L10 FePt magnetic thin films was investigated using X-ray magnetic circular dichroism (XMCD). The spin and orbital moments were calculated using the sum rules; it was found that the spin and orbital moment of Fe in L10 FePt films are ∼2.5 and 0.2 μB, respectively. The relative XMCD asymmetry at Fe L3 peak on the dependence of applied field suggested that the majority magnetic moment of L10 FePt films resulted from Fe.

Condensed Matter::Materials ScienceMaterials scienceCondensed matter physicsField (physics)Magnetic momentX-ray magnetic circular dichroismMagnetic circular dichroismMoment (physics)Field dependenceThin filmCondensed Matter PhysicsSpin (physics)Electronic Optical and Magnetic MaterialsJournal of Magnetism and Magnetic Materials
researchProduct