0000000000008240
AUTHOR
E. La Malfa Ribolla
On the Use of L-shaped Granular Chains for the Assessment of Thermal Stress in Slender Structures
Slender beams subjected to compressive load are common in civil engineering. The rapid in-situ measurement of this stress may help preventing structural anomalies. In this article, we describe the coupling mechanism between highly nonlinear solitary waves (HNSWs) propagating along an L- shaped granular system and a beam in contact with the gran- ular medium. We evaluate the use of these waves to measure stress in thermally loaded structures and to estimate the neutral temperature, i.e. the temperature at which the stress is null. We investigate numerically and experimentally one and two L- shaped chains of spherical particles in contact with a prismatic beam subjected to heat. We find that …
Meshless meso-modeling of masonry in the computational homogenization framework
In the present study a multi-scale computational strategy for the analysis of structures made-up of masonry material is presented. The structural macroscopic behavior is obtained making use of the Computational Homogenization (CH) technique based on the solution of the Boundary Value Problem (BVP) of a detailed Unit Cell (UC) chosen at the mesoscale and representative of the heterogeneous material. The attention is focused on those materials that can be regarded as an assembly of units interfaced by adhesive/cohesive joints. Therefore, the smallest UC is composed by the aggregate and the surrounding joints, the former assumed to behave elastically while the latter show an elastoplastic soft…