0000000000008825
AUTHOR
Liviu F. Chibotaru
Cover Picture: Dynamic Magnetic and Optical Insight into a High Performance Pentagonal Bipyramidal DyIII Single-Ion Magnet (Chem. Eur. J. 24/2017)
OpenMolcas: From Source Code to Insight
In this article we describe the OpenMolcas environment and invite the computational chemistry community to collaborate. The open-source project already includes a large number of new developments realized during the transition from the commercial MOLCAS product to the open-source platform. The paper initially describes the technical details of the new software development platform. This is followed by brief presentations of many new methods, implementations, and features of the OpenMolcas program suite. These developments include novel wave function methods such as stochastic complete active space self-consistent field, density matrix renormalization group (DMRG) methods, and hybrid multico…
Ferromagnetic kinetic exchange interaction in magnetic insulators
The superexchange theory predicts dominant antiferromagnetic kinetic interaction when the orbitals accommodating magnetic electrons are covalently bonded through diamagnetic bridging atoms/groups. Here we show that explicit consideration of magnetic and (leading) bridging orbitals, together with the electron transfer between the former, reveals a strong ferromagnetic kinetic exchange contribution. First principle calculations show that it is comparable in strength with antiferromagnetic superexchange in a number of magnetic materials with diamagnetic metal bridges. In particular, it is responsible for a very large ferromagnetic coupling ($-10$ meV) between the iron ions in a Fe$^{3+}$-Co$^{…
Dynamic Magnetic and Optical Insight into a High Performance Pentagonal Bipyramidal Dy(III) Single-Ion Magnet
The pentagonal bipyramidal single-ion magnets (SIMs) are among the most attractive prototypes of high-performance single-molecule magnets (SMMs). Here, a fluorescence-active phosphine oxide ligand CyPh2PO (=cyclohexyl(diphenyl)phosphine oxide) was introduced into [Dy(CyPh2PO)2(H2O)5]Br3⋅2 (CyPh2PO)⋅EtOH⋅3 H2O, and combined dynamic magnetic measurement, optical characterization, ab initio calculation, and magneto-optical correlation of this high-performance pseudo-D5h DyIII SIM with large Ueff (508(2) K) and high magnetic hysteresis temperature (19 K) were performed. This work provides a deeper insight into the rational design of promising molecular magnets.
Interplay of spin-dependent delocalization and magnetic anisotropy in the ground and excited states of [Gd2@C78]− and [Gd2@C80]−
The magnetic properties and electronic structure of the ground and excited states of two recently characterized endohedral metallo-fullerenes, [Gd2@C78]- (1) and [Gd2@C80]- (2), have been studied by theoretical methods. The systems can be considered as [Gd2]5+ dimers encapsulated in a fullerene cage with the fifteen unpaired electrons ferromagnetically coupled into an S = 15/2 high-spin configuration in the ground state. The microscopic mechanisms governing the Gd-Gd interactions leading to the ferromagnetic ground state are examined by a combination of density functional and ab initio calculations and the full energy spectrum of the ground and lowest excited states is constructed by means …
Dynamic Magnetic and Optical Insight into a High Performance Pentagonal Bipyramidal Dy(III) Single-Ion Magnet
The pentagonal bipyramidal single-ion magnets (SIMs) are among the most attractive prototypes of high-performance single-molecule magnets (SMMs). Here, a fluorescence-active phosphine oxide ligand CyPh2PO (=cyclohexyl(diphenyl)phosphine oxide) was introduced into [Dy(CyPh2PO)2(H2O)5]Br3⋅2 (CyPh2PO)⋅EtOH⋅3 H2O, and combined dynamic magnetic measurement, optical characterization, ab initio calculation, and magneto-optical correlation of this high-performance pseudo-D5h DyIII SIM with large Ueff (508(2) K) and high magnetic hysteresis temperature (19 K) were performed. This work provides a deeper insight into the rational design of promising molecular magnets. peerReviewed
Thermal expansion and magnetic properties of benzoquinone-bridged dinuclear rare-earth complexes.
The synthesis and structural characterization of two benzoquinone-bridged dinuclear rare-earth complexes [BQ(MCl2·THF3)2] (BQ = 2,5-bisoxide-1,4-benzoquinone; M = Y (1), Dy (2)) are described. Of these reported metal complexes, the dysprosium analogue 2 is the first discrete bridged dinuclear lanthanide complex in which both metal centres reside in pentagonal bipyramidal environments. Interestingly, both complexes undergo significant thermal expansion upon heating from 120 K to 293 K as illustrated by single-crystal X-ray and powder diffraction experiments. AC magnetic susceptibility measurements reveal that 2 does not show the slow relation of magnetization in zero dc field. The absent of …
CCDC 1519259: Experimental Crystal Structure Determination
Related Article: Yan-Cong Chen, Jun-Liang Liu, Yan-Hua Lan, Zhi-Qiang Zhong, Akseli Mansikkamäki, Liviu Ungur, Quan-Wen Li, Jian-Hua Jia, Liviu F. Chibotaru, Jun-Bo Han, Wolfgang Wernsdorfer, Xiao-Ming Chen, and Ming-Liang Tong|2017|Chem.-Eur.J.|23|5708|doi:10.1002/chem.201606029
CCDC 1557625: Experimental Crystal Structure Determination
Related Article: Jani O. Moilanen, Akseli Mansikkamäki, Manu Lahtinen, Fu-Sheng Guo, Elina Kalenius, Richard A. Layfield, Liviu F. Chibotaru|2017|Dalton Trans.|46|13582|doi:10.1039/C7DT02565C
CCDC 1557624: Experimental Crystal Structure Determination
Related Article: Jani O. Moilanen, Akseli Mansikkamäki, Manu Lahtinen, Fu-Sheng Guo, Elina Kalenius, Richard A. Layfield, Liviu F. Chibotaru|2017|Dalton Trans.|46|13582|doi:10.1039/C7DT02565C
CCDC 1557623: Experimental Crystal Structure Determination
Related Article: Jani O. Moilanen, Akseli Mansikkamäki, Manu Lahtinen, Fu-Sheng Guo, Elina Kalenius, Richard A. Layfield, Liviu F. Chibotaru|2017|Dalton Trans.|46|13582|doi:10.1039/C7DT02565C
CCDC 1519258: Experimental Crystal Structure Determination
Related Article: Yan-Cong Chen, Jun-Liang Liu, Yan-Hua Lan, Zhi-Qiang Zhong, Akseli Mansikkamäki, Liviu Ungur, Quan-Wen Li, Jian-Hua Jia, Liviu F. Chibotaru, Jun-Bo Han, Wolfgang Wernsdorfer, Xiao-Ming Chen, and Ming-Liang Tong|2017|Chem.-Eur.J.|23|5708|doi:10.1002/chem.201606029