0000000000009422
AUTHOR
Ornella Randazzo
SF3B1 modulators affect key genes in metastasis and drug influx: a new approach to fight pancreatic cancer chemoresistance.
Aim: Because mutations of splicing factor 3B subunit-1 (SF3B1) have been identified in 4% of pancreatic ductal adenocarcinoma (PDAC) patients, we investigated the activity of new potential inhibitors of SF3B1 in combination with gemcitabine, one of the standard drugs, in PDAC cell lines. Methods: One imidazo[2,1-b][1,3,4]thiadiazole derivative (IS1) and three indole derivatives (IS2, IS3 and IS4), selected by virtual screening from an in-house library, were evaluated by the sulforhodamine-B and wound healing assay for their cytotoxic and antimigratory activity in the PDAC cells SUIT-2, Hs766t and Panc05.04, the latter harbouring the SF3B1 mutations. The effects on the splicing pattern of pr…
DHFR Inhibitors: Reading the Past for Discovering Novel Anticancer Agents.
Dihydrofolate reductase inhibitors are an important class of drugs, as evidenced by their use as antibacterial, antimalarial, antifungal, and anticancer agents. Progress in understanding the biochemical basis of mechanisms responsible for enzyme selectivity and antiproliferative effects has renewed the interest in antifolates for cancer chemotherapy and prompted the medicinal chemistry community to develop novel and selective human DHFR inhibitors, thus leading to a new generation of DHFR inhibitors. This work summarizes the mechanism of action, chemical, and anticancer profile of the DHFR inhibitors discovered in the last six years. New strategies in DHFR drug discovery are also provided, …
DESIGN OF SF3B1 SUBUNIT MODULATORS OF THE SF3B SPLICEOSOME COMPLEX
The subject of this dissertation is the search for new therapeutic strategies for pancreatic cancer and aims to implement a Drug Discovery process for the rational design and synthesis of molecules active in the modulation of pathways related to the regulation of pre-mRNA splicing process. This research project is the result of a joint PhD between the University of Palermo, Italy, and the Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands. It integrates complementary skills in pharmaceutical chemistry and translational cancer research with a special focus on the rational design of new anticancer compounds potentially active on SF3B1 (Splicing Factor 3B …
New Imidazo[2,1-b][1,3,4]Thiadiazole Derivatives Inhibit FAK Phosphorylation and Potentiate the Antiproliferative Effects of Gemcitabine Through Modulation of the Human Equilibrative Nucleoside Transporter-1 in Peritoneal Mesothelioma
Background/aim A new class of imidazo[2,1-b][1,3,4]thiadiazole compounds have recently been evaluated as inhibitors of phosphorylation of focal adhesion kinase (FAK) in pancreatic cancer. FAK is overexpressed in mesothelioma and has recently emerged as an interesting target for the treatment of this disease. Materials and methods Ten imidazo[2,1-b][1,3,4]thiadiazole compounds characterized by indole bicycle and a thiophene ring, were evaluated for their cytotoxic activity in two primary cell cultures of peritoneal mesothelioma, MesoII and STO cells. Results Compounds 1a and 1b showed promising antitumor activity with IC50 values in the range of 0.59 to 2.81 μM in both cell lines growing as …
Interrelationship between miRNA and splicing factors in pancreatic ductal adenocarcinoma
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers because of diagnosis at late stage and inherent/acquired chemoresistance. Recent advances in genomic profiling and biology of this disease have not yet been translated to a relevant improvement in terms of disease management and patient’s survival. However, new possibilities for treatment may emerge from studies on key epigenetic factors. Deregulation of microRNA (miRNA) dependent gene expression and mRNA splicing are epigenetic processes that modulate the protein repertoire at the transcriptional level. These processes affect all aspects of PDAC pathogenesis and have great potential to unravel new therapeutic targets…
“Open Sesame?”: biomarker status of the human equilibrative nucleoside transporter-1 and molecular mechanisms influencing its expression and activity in the uptake and cytotoxicity of gemcitabine in pancreatic cancer
Simple Summary Despite the enormous advance in biomarker discovery, many potential biomarkers of drug activity are unable to satisfy the clinical need due to inadequate sensitivity and specificity. The nucleoside transporter hENT-1 has been studied as a potential biomarker to predict the effect of the widely used anticancer drug gemcitabine in pancreatic cancer. However, several studies showed controversial results regarding the predictive value of hENT-1, prompting new analyses with larger cohorts of patients and standardized methodologies. Improved insights on molecular mechanisms underlying hENT-1 expression and activity should also help in the identification of subsets of patients who a…