0000000000009920

AUTHOR

Martino Bolognesi

0000-0002-9253-5170

Ligation Tunes Protein Reactivity in an Ancient Haemoglobin: Kinetic Evidence for an Allosteric Mechanism in Methanosarcina acetivorans Protoglobin

Abstract: Protoglobin from Methanosarcina acetivorans (MaPgb) is a dimeric globin with peculiar structural properties such as a completely buried haem and two orthogonal tunnels connecting the distal cavity to the solvent. CO binding to and dissociation from MaPgb occur through a biphasic kinetics. We show that the heterogenous kinetics arises from binding to (and dissociation from) two tertiary conformations in ligation-dependent equilibrium. Ligation favours the species with high binding rate (and low dissociation rate). The equilibrium is shifted towards the species with low binding (and high dissociation) rates for the unliganded molecules. A quantitative model is proposed to describe t…

research product

Human Brain Neuroglobin Structure Reveals a Distinct Mode of Controlling Oxygen Affinity

Neuroglobin, mainly expressed in vertebrate brain and retina, is a recently identified member of the globin superfamily. Augmenting O(2) supply, neuroglobin promotes survival of neurons upon hypoxic injury, potentially limiting brain damage. In the absence of exogenous ligands, neuroglobin displays a hexacoordinated heme. O(2) and CO bind to the heme iron, displacing the endogenous HisE7 heme distal ligand. Hexacoordinated human neuroglobin displays a classical globin fold adapted to host the reversible bis-histidyl heme complex and an elongated protein matrix cavity, held to facilitate O(2) diffusion to the heme. The neuroglobin structure suggests that the classical globin fold is endowed …

research product

The Tempered Polymerization of Human Neuroserpin

Neuroserpin, a member of the serpin protein superfamily, is an inhibitor of proteolytic activity that is involved in pathologies such as ischemia, Alzheimer's disease, and Familial Encephalopathy with Neuroserpin Inclusion Bodies (FENIB). The latter belongs to a class of conformational diseases, known as serpinopathies, which are related to the aberrant polymerization of serpin mutants. Neuroserpin is known to polymerize, even in its wild type form, under thermal stress. Here, we study the mechanism of neuroserpin polymerization over a wide range of temperatures by different techniques. Our experiments show how the onset of polymerization is dependent on the formation of an intermediate mon…

research product

Coupling of the heme and an internal disulfide bond in human neuroglobin

Neuroglobin displays a hexacoordination His-Fe-His in the absence of external ligands such as oxygen. The observed oxygen affinity therefore depends on the binding rates of both oxygen and the competing distal histidine. Furthermore, the binding properties depend on the presence of an internal disulfide bond. In the case of human neuroglobin, cysteines at positions CD7 and D5 are sufficiently close to form an internal disulfide bond. For cytoglobin, the cysteine residues at positions A7 and GH4 may also form a disulfide bond. Mass spectrometry, ligand binding, and thiol accessibility studies were used to study the role influence of these disulfide bonds. Mutation of specific cysteines, or r…

research product

Neuroglobin and cytoglobin in search of their role in the vertebrate globin family

Neuroglobin and cytoglobin are two recent additions to the family of heme-containing respiratory proteins of man and other vertebrates. Here, we review the present state of knowledge of the structures, ligand binding kinetics, evolution and expression patterns of these two proteins. These data provide a first glimpse into the possible physiological roles of these globins in the animal's metabolism. Both, neuroglobin and cytoglobin are structurally similar to myoglobin, although they contain distinct cavities that may be instrumental in ligand binding. Kinetic and structural studies show that neuroglobin and cytoglobin belong to the class of hexa-coordinated globins with a biphasic ligand-bi…

research product

The human brain hexacoordinated neuroglobin three-dimensional structure

Neuroglobin, mainly expressed in vertebrate brain and retina, is a recently identified member of the globin superfamily. Augmenting O2 supply, neuroglobin promotes survival of neurons upon hypoxic injury, potentially limiting brain damage. In the absence of exogenous ligands, neuroglobin displays a six-coordinated heme. O2 and CO bind to the heme-iron, displacing the endogenous HisE7 heme distal ligand. Hexacoordinated human neuroglobin displays a classical globin fold, adapted to host the reversible bis-histidyl heme complex, and an elongated protein matrix cavity, held to facilitate O2 diffusion to the heme. The structure of neuroglobin suggests that the classical globin fold is endowed w…

research product

New insight into the haemoglobin superfamily: preliminary crystallographic characterization of human cytoglobin.

Human cytoglobin, present in almost all tissue types, is a newly identified member of the Hb superfamily. A double mutant, having both cysteines replaced by serines, has been overexpressed in Escherichia coli, purified and crystallized. A highly redundant SAD data set has been collected at the haem Fe-atom absorption edge (lambda = 1.720 A) to 2.60 A resolution. The crystals belong to the orthorhombic P2(1)2(1)2(1) space group, with unit-cell parameters a = 46.8, b = 73.1, c = 98.9 A and two molecules per asymmetric unit. The anomalous difference Patterson map clearly reveals the position of the haem Fe-atom sites, thus paving the way for SAD structure determination.

research product

Human neuroglobin: crystals and preliminary X-ray diffraction analysis

Neuroglobin, a recently discovered member of the haemoglobin superfamily, is primarily expressed in the brain of humans and other vertebrates, where it has been proposed to enhance O(2) supply in response to hypoxia or ischaemia, protecting the neuron from hypoxic injury. Neuroglobin is the first example of a vertebrate haemoglobin in which a hexacoordinate haem geometry has been detected. A triple mutant (replacing three Cys residues) of human neuroglobin (151 amino acids) has been expressed in Escherichia coli, purified and crystallized in two crystal forms, the best of which diffracts to 1.95 A resolution using synchrotron radiation. The crystals belong to space group P2(1), with unit-ce…

research product

Neuroglobin and cytoglobin: fresh blood to the vertebrate globin family

Neuroglobin and cytoglobin are two recently discovered members of the vertebrate globin family. Both are intracellular proteins endowed with hexacoordinated heme-Fe atoms, in their ferrous and ferric forms, and display O2 affinities comparable with that of myoglobin. Neuroglobin, which is predominantly expressed in nerve cells, is thought to protect neurons from hypoxic–ischemic injury. It is of ancient evolutionary origin, and is homologous to nerve globins of invertebrates. Cytoglobin is expressed in many different tissues, although at varying levels. It shares common ancestry with myoglobin, and can be traced to early vertebrate evolution. The physiological roles of neuroglobin and cytog…

research product

Functional and dysfunctional conformers of human neuroserpin characterized by optical spectroscopies and Molecular Dynamics

Neuroserpin (NS) is a serine protease inhibitor (SERPIN) involved in different neurological pathologies, including the Familial Encephalopathy with Neuroserpin Inclusion Bodies (FENIB), related to the aberrant polymerization of NS mutants. Here we present an in vitro and in silico characterization of native neuroserpin and its dysfunctional conformation isoforms: the proteolytically cleaved conformer, the inactive latent conformer, and the polymeric species. Based on circular dichroism and fluorescence spectroscopy, we present an experimental validation of the latent model and highlight the main structural features of the different conformers. In particular, emission spectra of aromatic res…

research product

Two Latent and Two Hyperstable Polymeric Forms of Human Neuroserpin

AbstractHuman neuroserpin (hNS) is a serine protease inhibitor that belongs to the serpin superfamily and is expressed in nervous tissues. The serpin fold is generally characterized by a long exposed loop, termed the reactive center loop, that acts as bait for the target protease. Intramolecular insertion of the reactive center loop into the main serpin β-sheet leads to the serpin latent form. As with other known serpins, hNS pathological mutants have been shown to accumulate as polymers composed of quasi-native protein molecules. Although hNS polymerization has been intensely studied, a general agreement about serpin polymer organization is still lacking. Here we report a biophysical chara…

research product

Mapping protein matrix cavities in human cytoglobin through Xe atom binding

Abstract Cytoglobin is the fourth recognized globin type, almost ubiquitously distributed in human tissues; its function is still poorly understood. Cytoglobin displays a core region of about 150 residues, structurally related to hemoglobin and myoglobin, and two extra segments, about 20 residues each, at the N- and C-termini. The core region hosts a large apolar cavity, held to provide a ligand diffusion pathway to/from the heme, and/or ligand temporary docking sites. Here we report the crystal structure (2.4 A resolution, R -factor 19.1%) of a human cytoglobin mutant bearing the CysB2(38) → Ser and CysE9(83) → Ser substitutions (CYGB*), treated under pressurized xenon. Three Xe atoms bind…

research product

Cyanide binding and heme cavity conformational transitions in **Drosophila melanogaster** hexacoordinate hemoglobin

The reason for the presence of hemoglobin-like molecules in insects, such as Drosophila melanogaster, that live in fully aerobic environments has yet to be determined. Heme endogenous hexacoordination (where HisE7 and HisF8 axial ligands to the heme Fe atom are both provided by the protein) is a recently discovered mechanism proposed to modulate O-2 affinity in hemoglobins from different species. Previous results have shown that D. melanogaster hemoglobin 1 (product of the glob1 gene) displays heme endogenous hexacoordination in both the ferrous and ferric states. Here we present kinetic data characterizing the exogenous cyanide ligand binding process, and the three-dimensional structure (a…

research product

On the molecular structure of human neuroserpin polymers

The polymerization of serpins is at the root of a large class of diseases; the molecular structure of serpin polymers has been recently debated. In this work, we study the polymerization kinetics of human neuroserpin by Fourier Transform Infra Red spectroscopy and by time-lapse Size Exclusion Chromatography. First, we show that two distinct neuroserpin polymers, formed at 45 and 85°C, display the same isosbestic points in the Amide I' band, and therefore share common secondary structure features. We also find a concentration independent polymerization rate at 45°C suggesting that the polymerization rate-limiting step is the formation of an activated monomeric species. The polymer structures…

research product

Neuroglobin and cytoglobin:two new entries in the hemoglobin superfamily.

Abstract: Neuroglobin (Ngb) and cytoglobin (Cygb) are two newly discovered intracellular members of the vertebrate hemoglobin (Hb) family. Ngb, predominantly expressed in nerve cells, is of ancient evolutionary origin and is homologous to nerve-globins of invertebrates. Cygb, present in many different tissues, shares common ancestry with myoglobin (Mb) and can be traced to early vertebrate evolution. Ngb and Cygb display the classical three-on-three -helical globin fold and are endowed with a hexa-coordinate heme Fe atom, in both their ferrous and ferric forms, having the heme distal HisE7 residue as the endogenous sixth ligand. Reversible intramolecular hexa- to penta-coordination of the h…

research product

Bishistidyl heme hexacoordination, a key structural property in Drosophila melanogaster hemoglobin

Hemoglobins at high concentration have been isolated long ago from some insect larvae living in hypoxic environments. Conversely, a monomeric hemoglobin has been discovered recently in the fruit fly Drosophila melanogaster as intracellular protein expressed both in larvae and in the adult fly. Such a finding indicates that the oxygen supply in insects may be more complex than previously thought, relying not only on O2 diffusion through the tubular tracheal system, but also on carrier-mediated transport and storage. We present here the crystal structure of recombinant D. melanogaster hemoglobin at 1.20 A resolution. Spectroscopic data show that the protein displays a hexacoordinated heme, wh…

research product

Crystal Structure of Cytoglobin: The Fourth Globin Type Discovered in Man Displays Heme Hexa-coordination

Cytoglobin is a recently discovered hemeprotein belonging to the globin superfamily together with hemoglobin, myoglobin and neuroglobin. Although distributed in almost all human tissues, cytoglobin has not been ascribed a specific function. Human cytoglobin is composed of 190 amino acid residues. Sequence alignments show that a protein core region (about 150 residues) is structurally related to hemoglobin and myoglobin, being complemented by about 20 extra residues both on the N and C termini. In the absence of exogenous ligands (e.g. O2), the cytoglobin distal HisE7 residue is coordinated to the heme Fe atom, thus decreasing the ligand affinity. The crystal structure of human cytoglobin (2…

research product

The redox state of the cell regulates the ligand binding affinity of human neuroglobin and cytoglobin.

Neuroglobin and cytoglobin reversibly bind oxygen in competition with the distal histidine, and the observed oxygen affinity therefore depends on the properties of both ligands. In the absence of an external ligand, the iron atom of these globins is hexacoordinated. There are three cysteine residues in human neuroglobin; those at positions CD7 and D5 are sufficiently close to form an internal disulfide bond. Both cysteine residues in cytoglobin, although localized in other positions than in human neuroglobin, may form a disulfide bond as well. The existence and position of these disulfide bonds was demonstrated by mass spectrometry and thiol accessibility studies. Mutation of the cysteines …

research product

CO rebinding kinetics and molecular dynamics simulations highlight dynamic regulation of internal cavities in human cytoglobin

Abstract: Cytoglobin (Cygb) was recently discovered in the human genome and localized in different tissues. It was suggested to play tissue-specific protective roles, spanning from scavenging of reactive oxygen species in neurons to supplying oxygen to enzymes in fibroblasts. To shed light on the functioning of such versatile machinery, we have studied the processes supporting transport of gaseous heme ligands in Cygb. Carbon monoxide rebinding shows a complex kinetic pattern with several distinct reaction intermediates, reflecting rebinding from temporary docking sites, second order recombination, and formation (and dissociation) of a bis-histidyl heme hexacoordinated reaction intermediate…

research product