0000000000010047
AUTHOR
Geoffrey A. Ozin
Tunable defects in colloidal photonic crystals
We present a bottom-up approach for the construction of tunable functional defects in colloidal photonic crystals (CPCs). These structures incorporate polyelectrolyte multilayer (PEM) planar defects embedded in silica CPCs through a combination of evaporation induced self-assembly and microcontact transfer printing. We show how the enormous chemical diversity inherent to PEMs can be harnessed to create chemically active defect structures responsive to solvent vapor pressures, light, temperature as well as redox cycling. A sharp transmission state within the photonic stopband, induced by the PEM defect, can be precisely, reproducibly and in some cases reversibly tuned by these external stimu…
"Smart" defects in colloidal photonic crystals
AbstractWe present a bottom-up approach for the construction of "Smart" active defects in colloidal photonic crystals (CPCs). These structures incorporate polyelectrolyte multilayer (PEM) planar defects embedded in silica CPCs through a combination of evaporation induced self-assembly and microcontact transfer printing. We show how the enormous chemical diversity inherent to PEMs can be harnessed to create chemically active defect structures responsive to solvent vapor pressures, light, temperature as well as redox cycling. A sharp transmission state within the photonic stopband, induced by the PEM defect, can be precisely, reproducibly and in some cases reversibly tuned by these external s…
Nanoparticle One-Dimensional Photonic-Crystal Dye Laser
The stimulated emission from an organic dye adsorbed within the void network of a NP 1D (photonic crystals) PC, was studied. The nanoparticle one-dimensional photonic crystals (NP 1DPCs) were assembled by polyelectrolyte-assisted layer-by-layer deposition with subsequent calcination of the films to remove the polymer components. Each layer was prepared by spin-coating a block-copolymer-templated titania- or silica-based sol solution followed by a calcination step. To maximize the photonic-crystal effect, PCs consisting of eleven bilayers, compared to the four-bilayer NP 1D PCs, were fabricated with good structural and optical quality over 2 cm ×2 cm areas. The effective refractive index of …