0000000000010157

AUTHOR

F. Dechery

showing 8 related works from this author

In-beam spectroscopy with intense ion beams: Evidence for a rotational structure in246Fm

2012

The rotational structure of ${}^{246}$Fm has been investigated using in-beam $\ensuremath{\gamma}$-ray spectroscopic techniques. The experiment was performed using the JUROGAMII germanium detector array coupled to the gas-filled recoil ion transport unit (RITU) and the gamma recoil electron alpha tagging (GREAT) focal plane detection system. Nuclei of ${}^{246}$Fm were produced using a 186 MeV beam of ${}^{40}$Ar impinging on a ${}^{208}$Pb target. The JUROGAMII array was fully instrumented with Tracking Numerical Treatment 2 Dubna (TNT2D) digital acquisition cards. The use of digital electronics and a rotating target allowed for unprecedented beam intensities of up to 71 particle-nanoamper…

PhysicsNuclear and High Energy Physicsta114010308 nuclear & particles physics23.20.−g 24.10.Eq 21.10.Re 27.90.+b[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Tracking (particle physics)01 natural sciencesRecoil electronKokeellinen ydinfysiikkaSemiconductor detectorIonRecoilCardinal pointNuclear magnetic resonance0103 physical sciencesNuclear Physics - ExperimentExperimental nuclear physicsAtomic physicsNuclear Experiment010306 general physicsSpectroscopyBeam (structure)Physical Review C
researchProduct

The 48Ca+181Ta reaction: Cross section studies and investigation of neutron-deficient 86 ≤ Z ≤ 93 isotopes

2019

© 2019 Fusion-evaporation reactions with the doubly magic projectile 48 Ca were used to access neutron-deficient nuclei around neptunium at the velocity filter SHIP, and investigated using the COMPASS decay spectroscopy station. With the use of digital electronics, several isotopes produced via neutron, proton, and α evaporation channels were identified by establishing correlated α-decay chains with short-lived sub-μs members. Data are given on decay chains stemming from 225,226 Np, 225 U, and 222,223 Pa. New information on the isotopes 225,226 Np and 222 Pa was obtained. Production cross sections of nuclei in the region using a variety of projectiles are discussed. The measured production …

PhysicsNuclear and High Energy PhysicsProtonIsotope010308 nuclear & particles physicsProjectileNeptuniumNuclear Theorychemistry.chemical_elementDigital electronics for nuclear spectroscopy[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energy01 natural sciencesNuclear physicschemistry0103 physical sciencesAlpha decayNeutronAlpha decayDecay chainHeavy-ion induced fusionNuclear Experiment010306 general physicsSpectroscopyNuclear Physics A
researchProduct

COMPASS—A COMPAct decay spectroscopy set-up

2018

Abstract A compact silicon detector array with high spatial granularity and fast, fully digital data recording has been developed and commissioned for the investigation of heavy and superheavy nuclear species. The detector array can be combined in close geometry with large volume germanium detectors. It offers comprehensive particle and photon coincidence and correlation spectroscopy by highly efficient evaporation residue, α , γ , conversion electron and X-ray detection supported by the high granularity of the implantation chip. Access to fast decay events in the sub-microsecond region is made possible by the fast timing properties of the digital signal processing. A novel Si-chip support …

Nuclear and High Energy Physics[formula omitted]Ion beamγαLarge volume Ge detectors7. Clean energy01 natural sciencesSignal99-00Optics0103 physical sciencesSi strip detector[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsSpectroscopyInstrumentationCE and X-ray spectroscopyDigital signal processingPhysics010308 nuclear & particles physicsbusiness.industryDetectorDigital electronics00-01ChipFilter (video)GranularitybusinessNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

First prompt in-beam γ-ray spectroscopy of a superheavy element: the256Rf

2013

Using state-of-the-art γ-ray spectroscopic techniques, the first rotational band of a superheavy element, extending up to a spin of 20 , was discovered in the nucleus 256Rf. To perform such an experiment at the limits of the present instrumentation, several developments were needed. The most important of these developments was of an intense isotopically enriched 50Ti beam using the MIVOC method. The experimental set-up and subsequent analysis allowed the 256Rf ground-state band to be revealed. The rotational properties of the band are discussed and compared with neighboring transfermium nuclei through the study of their moments of inertia. These data suggest that there is no evidence of a s…

PhysicsHistoryInstrumentationShell (structure)Moment of inertiaComputer Science ApplicationsEducationNuclear physicsmedicine.anatomical_structuremedicineAtomic physicsSpin (physics)SpectroscopyNucleusBeam (structure)Journal of Physics: Conference Series
researchProduct

Production cross section and decay study of Es243 and Md249

2019

In the study of the odd-$Z$, even-$N$ nuclei $^{243}$Es and $^{249}$Md, performed at the University of Jyv\"askyl\"a, the fusion-evaporation reactions $^{197}$Au($^{48}$Ca,2$n$)$^{243}$Es and $^{203}$Tl($^{48}$Ca,2$n$)$^{249}$Md have been used for the first time. Fusion-evaporation residues were selected and detected using the RITU gas-filled separator coupled with the focal-plane spectrometer GREAT. For $^{243}$Es, the recoil decay correlation analysis yielded a half-life of $24 \pm 3$s, and a maximum production cross section of $37 \pm 10$ nb. In the same way, a half-life of $26 \pm 1$ s, an $\alpha$ branching ratio of 75 $\pm$ 5%, and a maximum production cross section of 300 $\pm$ 80 nb…

Nuclear reactionPhysicsRecoil010308 nuclear & particles physicsBranching fraction0103 physical sciencesCorrelation analysisAtomic physics010306 general physics01 natural sciencesPhysical Review C
researchProduct

Shell-Structure and Pairing Interaction in Superheavy Nuclei: Rotational Properties of theZ=104NucleusRf256

2012

The rotational band structure of the $Z=104$ nucleus $^{256}\mathrm{Rf}$ has been observed up to a tentative spin of $20\ensuremath{\hbar}$ using state-of-the-art $\ensuremath{\gamma}$-ray spectroscopic techniques. This represents the first such measurement in a superheavy nucleus whose stability is entirely derived from the shell-correction energy. The observed rotational properties are compared to those of neighboring nuclei and it is shown that the kinematic and dynamic moments of inertia are sensitive to the underlying single-particle shell structure and the specific location of high-$j$ orbitals. The moments of inertia therefore provide a sensitive test of shell structure and pairing i…

Physics010308 nuclear & particles physicsNuclear TheoryShell (structure)General Physics and AstronomyMoment of inertia01 natural sciencesmedicine.anatomical_structureAtomic orbitalPairing0103 physical sciencesmedicineAtomic physicsNuclear Experiment010306 general physicsSpin (physics)Electronic band structureNucleusEnergy (signal processing)Physical Review Letters
researchProduct

First prompt in-beam gamma-ray spectroscopy of a superheavy element: the 256Rf

2013

Using state-of-the-art γ-ray spectroscopic techniques, the first rotational band of a superheavy element, extending up to a spin of 20 ¯h, was discovered in the nucleus 256Rf. To perform such an experiment at the limits of the present instrumentation, several developments were needed. The most important of these developments was of an intense isotopically enriched 50Ti beam using the MIVOC method. The experimental set-up and subsequent analysis allowed the 256Rf ground-state band to be revealed. The rotational properties of the band are discussed and compared with neighboring transfermium nuclei through the study of their moments of inertia. These data suggest that there is no evidence of a…

Experimental Nuclear Physics
researchProduct

Shell-Structure and Pairing Interaction in Superheavy Nuclei: Rotational Properties of the Z=104 Nucleus (256)Rf

2012

The rotational band structure of the Z ¼ 104 nucleus 256Rf has been observed up to a tentative spin of 20@ using state-of-the-art -ray spectroscopic techniques. This represents the first such measurement in a superheavy nucleus whose stability is entirely derived from the shell-correction energy. The observed rotational properties are compared to those of neighboring nuclei and it is shown that the kinematic and dynamic moments of inertia are sensitive to the underlying single-particle shell structure and the specific location of high-j orbitals. The moments of inertia therefore provide a sensitive test of shell structure and pairing in superheavy nuclei which is essential to ensure the val…

IN-BEAMNuclear TheoryTOTAL DATA READOUTddc:550ELEMENTSExperimental nuclear physics[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear ExperimentKokeellinen ydinfysiikkaGAMMA-RAY SPECTROSCOPY
researchProduct