0000000000010387

AUTHOR

Elena Steiert

Protein-Based Nanoparticles for the Delivery of Enzymes with Antibacterial Activity.

Proteins represent a versatile biopolymer material for the preparation of nanoparticles due to their biocompatibility, biodegradability, and low immunogenicity. This study presents a protein-based nanoparticle system consisting of high surface PEGylated lysozyme polyethylene glycol-modified lysozyme (LYZmPEG ). This protein modification leads to a solubility switch, which allows a nanoparticle preparation using a mild double emulsion method without the need of surfactants. The method allows the encapsulation of large hydrophilic payloads inside of the protein-based nanoparticle system. Native lysozyme (LYZ) was chosen as payload because of its innate activity as natural antibiotic. The mild…

research product

Double stimuli-responsive polysaccharide block copolymers as green macrosurfactants for near-infrared photodynamic therapy

The NIR absorbing photosensitizer phthalocyanine zinc (PC(Zn)) was stabilized in aqueous media as water-dispersible nanoparticles with a reduction- and pH-responsive full polysaccharide block copolymer. A cellular uptake and also photo switchable intracellular activity of the cargo upon irradiation at wavelengths in the near infrared region were shown. The block copolymer was synthesized by applying a copper-free click strategy based on a thiol exchange reaction, creating an amphiphilic double-stimuli-responsive mixed disulfide. The dual-sensitive polysaccharide micelles represent a non-toxic and biodegradable green macrosurfactant for the delivery of phthalocyanine zinc. By encapsulation i…

research product

pH-Responsive protein nanoparticlesviaconjugation of degradable PEG to the surface of cytochromec

Proteins represent a versatile biopolymer material for the preparation of nanoparticles. For drug delivery applications an acid-triggered disassembly and payload release is preferred. Herein, we present a protein nanoparticle system based on cytochrome c, which is surface-modified with acid-degradable polyethylene glycol (PEGylation). pH-Sensitivity was obtained through vinyl ether moieties distributed in the polyether backbone. When PEGylated, cytochrome c shows a different solubility behaviour in organic solvents, which allows for particle preparation using an emulsion-based solvent evaporation method. The resulting particles are stable under physiological conditions but degrade at acidic…

research product