0000000000010546

AUTHOR

Cédric Rébé

Cytotoxic effects of chemotherapy on cancer and immune cells: how can it be modulated to generate novel therapeutic strategies?

The first objective to use chemotherapy is to kill cancer cells. However, it is common knowledge that these drugs can also damage healthy host cells, especially immune cells, and thus impair the endogenous antitumor response. Here, we focus on the cytotoxic effects of chemotherapy on tumor cells and immune cells. It is not enough to simply kill cancer cells, and causing immunogenic cell death will impair the adaptive immune system's ability to fight the remaining cancer cells. On the other hand, the killing of immune cells can also enhance tumor growth. A study of the repercussions of the cytotoxic effects of chemotherapy is of great importance to evaluate the antitumor response. Strategie…

research product

Liver X Receptor–Mediated Induction of Cholesteryl Ester Transfer Protein Expression Is Selectively Impaired in Inflammatory Macrophages

Objective— Cholesteryl ester transfer protein (CETP) is a target gene for the liver X receptor (LXR). The aim of this study was to further explore this regulation in the monocyte-macrophage lineage and its modulation by lipid loading and inflammation, which are key steps in the process of atherogenesis. Methods and Results— Exposure of bone marrow–derived macrophages from human CETP transgenic mice to the T0901317 LXR agonist increased CETP, PLTP, and ABCA1 mRNA levels. T0901317 also markedly increased CETP mRNA levels and CETP production in human differentiated macrophages, whereas it had no effect on CETP expression in human peripheral blood monocytes. In inflammatory mouse and human mac…

research product

Carob leaf polyphenols trigger intrinsic apoptotic pathway and induce cell cycle arrest in colon cancer cells

IF 3.973; International audience; Chemoprevention of Colorectal cancer (CRC) is the major concern for improving public health. We investigated the protective effects of carob, Ceratonia siliqua L, leaf polyphenols (CLP) against CRC. Phenolic content analysis showed that CLP is enriched with gallic acid and m-coumaric acid. We observed that CLP exerted a dose dependent cytotoxic effect through the induction of apoptosis on CRC cell lines, with an IC50 around 20 mu g/mL CLP induced intrinsic apoptotic pathway through the caspase-9 activation and PARP cleavage in HCT-116 and CT-26 cells. Moreover, CLP induced cell cycle arrest in the G1 phase through p53 activation. Gallic acid and m-coumaric …

research product

Stat3 and Gfi-1 Transcription Factors Control Th17 Cell Immunosuppressive Activity via the Regulation of Ectonucleotidase Expression

International audience; Although Th17 cells are known to promote tissue inflammation and autoimmunity, their role during cancer progression remains elusive. Here, we showed that in vitro Th17 cells generated with the cytokines IL-6 and TGF-β expressed CD39 and CD73 ectonucleotidases, leading to adenosine release and the subsequent suppression of CD4(+) and CD8(+) T cell effector functions. The IL-6-mediated activation of the transcription factor Stat3 and the TGF-β-driven downregulation of Gfi-1 transcription factor were both essential for the expression of ectonucleotidases during Th17 cell differentiation. Stat3 supported whereas Gfi-1 repressed CD39 and CD73 expression by binding to thei…

research product

Inhibition of colon cancer growth by docosahexaenoic acid involves autocrine production of TNFα

IF 7.932; International audience; The omega-3 polyunsaturated fatty acid docosahexaenoic acid (DHA) has anti-inflammatory and anti-cancer properties. Among pro-inflammatory mediators, tumor necrosis factor a (TNF alpha) plays a paradoxical role in cancer biology with induction of cancer cell death or survival depending on the cellular context. The objective of the study was to evaluate the role of TNFa in DHA-mediated tumor growth inhibition and colon cancer cell death. The treatment of human colorectal cancer cells, HCT-116 and HCT-8 cells, with DHA triggered apoptosis in autocrine TNF alpha-dependent manner. We demonstrated that DHA-induced increased content of TNF alpha mRNA occurred thr…

research product

Identification of biological markers of liver X receptor (LXR) activation at the cell surface of human monocytes.

Background Liver X receptor (LXR) α and LXR β (NR1H3 and NR1H2) are oxysterol-activated nuclear receptors involved in the control of major metabolic pathways such as cholesterol homeostasis, lipogenesis, inflammation and innate immunity. Synthetic LXR agonists are currently under development and could find applications in various fields such as cardiovascular diseases, cancer, diabetes and neurodegenerative diseases. The clinical development of LXR agonists requires the identification of biological markers for pharmacodynamic studies. In this context, monocytes represent an attractive target to monitor LXR activation. They are easily accessible cells present in peripheral blood; they expres…

research product

Phenolic extract from oleaster (Olea europaea var. Sylvestris) leaves reduces colon cancer growth and induces caspase-dependent apoptosis in colon cancer cells via the mitochondrial apoptotic pathway.

Erratum inCorrection: Phenolic extract from oleaster (Olea europaea var. Sylvestris) leaves reduces colon cancer growth and induces caspase-dependent apoptosis in colon cancer cells via the mitochondrial apoptotic pathway. [PLoS One. 2017]; International audience; Dietary polyphenols, derived from natural products, have received a great interest for their chemopreventive properties against cancer. In this study, we investigated the effects of phenolic extract of the oleaster leaves (PEOL) on tumor growth in mouse model and on cell death in colon cancer cell lines. We assessed the effect of oleaster leaf infusion on HCT116 (human colon cancer cell line) xenograft growth in athymic nude mice.…

research product

Production of Adenosine by Ectonucleotidases: A Key Factor in Tumor Immunoescape

It is now well known that tumor immunosurveillance contributes to the control of cancer growth. Many mechanisms can be used by cancer cells to avoid the antitumor immune response. One such mechanism relies on the capacity of cancer cells or more generally of the tumor microenvironment to generate adenosine, a major molecule involved in antitumor T cell response suppression. Adenosine is generated by the dephosphorylation of extracellular ATP released by dying tumor cells. The conversion of ATP into adenosine is mediated by ectonucleotidase molecules, namely, CD73 and CD39. These molecules are frequently expressed in the tumor bed by a wide range of cells including tumor cells, regulatory T …

research product

Knock-down of the oxysterol receptor LXRα impairs cholesterol efflux in human primary macrophages: lack of compensation by LXRβ activation.

Liver X Receptors (LXRs) α and β are oxysterol-activated nuclear receptors involved in the control of lipid metabolism and inflammation. Pharmacological activation of LXR is promising in the treatment of atherosclerosis since it can promote cholesterol efflux from macrophages and prevent foam cell formation. However, the development of LXR agonists has been limited by undesirable side-effects such as hepatic steatosis mediated by LXRα activation. Therefore, it has been proposed that targeting LXRα activators to extrahepatic tissues or using LXRβ-specific activators could be used as alternative strategies. It is not clear whether these molecules will retain the full atheroprotective potentia…

research product

SOCS3 transactivation by PPARγ prevents IL-17-driven cancer growth.

Abstract Activation of the transcription factor PPARγ by the n-3 fatty acid docosahexaenoic acid (DHA) is implicated in controlling proinflammatory cytokine secretion, but the intracellular signaling pathways engaged by PPARγ are incompletely characterized. Here, we identify the adapter-encoding gene SOCS3 as a critical transcriptional target of PPARγ. SOCS3 promoter binding and gene transactivation by PPARγ was associated with a repression in differentiation of proinflammatory T-helper (TH)17 cells. Accordingly, TH17 cells induced in vitro displayed increased SOCS3 expression and diminished capacity to produce interleukin (IL)-17 following activation of PPARγ by DHA. Furthermore, naïve CD4…

research product

Bleomycin Exerts Ambivalent Antitumor Immune Effect by Triggering Both Immunogenic Cell Death and Proliferation of Regulatory T Cells

International audience; Bleomycin (BLM) is an anticancer drug currently used for the treatment of testis cancer and Hodgkin lymphoma. This drug triggers cancer cell death via its capacity to generate radical oxygen species (ROS). However, the putative contribution of anticancer immune responses to the efficacy of BLM has not been evaluated. We make here the observation that BLM induces immunogenic cell death. In particular, BLM is able to induce ROS-mediated reticulum stress and autophagy, which result in the surface exposure of chaperones, including calreticulin and ERp57, and liberation of HMBG1 and ATP. BLM induces anti-tumor immunity which relies on calreticulin, CD8(+) T cells and inte…

research product

The receptor NLRP3 is a transcriptional regulator of TH2 differentiation.

The receptor NLRP3 is involved in the formation of the NLRP3 inflammasome that activates caspase-1 and mediates the release of interleukin 1β (IL-1β) and IL-18. Whether NLRP3 can shape immunological function independently of inflammasomes is unclear. We found that NLRP3 expression in CD4(+) T cells specifically supported a T helper type 2 (TH2) transcriptional program in a cell-intrinsic manner. NLRP3, but not the inflammasome adaptor ASC or caspase-1, positively regulated a TH2 program. In TH2 cells, NLRP3 bound the Il4 promoter and transactivated it in conjunction with the transcription factor IRF4. Nlrp3-deficient TH2 cells supported melanoma tumor growth in an IL-4-dependent manner and …

research product

Accumulation of MDSC and Th17 Cells in Patients with Metastatic Colorectal Cancer Predicts the Efficacy of a FOLFOX-Bevacizumab Drug Treatment Regimen

Abstract Host immunity controls the development of colorectal cancer, and chemotherapy used to treat colorectal cancer is likely to recruit the host immune system at some level. Athough preclinical studies have argued that colorectal cancer drugs, such as 5-fluorouracil (5-FU) and oxaliplatin, exert such effects, their combination as employed in the oncology clinic has not been evaluated. Here, we report the results of prospective immunomonitoring of 25 metastatic colorectal cancer (mCRC) patients treated with a first-line combination regimen of 5-FU, oxaliplatin, and bevacizumab (FOLFOX–bevacizumab), as compared with 20 healthy volunteers. Before this therapy was initiated, T regulatory ce…

research product

Caspase-8 prevents sustained activation of NF-kappaB in monocytes undergoing macrophagic differentiation.

Abstract Caspases have demonstrated several nonapoptotic functions including a role in the differentiation of specific cell types. Here, we show that caspase-8 is the upstream enzyme in the proteolytic caspase cascade whose activation is required for the differentiation of peripheral-blood monocytes into macrophages. On macrophage colony-stimulating factor (M-CSF) exposure, caspase-8 associates with the adaptor protein Fas-associated death domain (FADD), the serine/threonine kinase receptor-interacting protein 1 (RIP1) and the long isoform of FLICE-inhibitory protein FLIP. Overexpression of FADD accelerates the differentiation process that does not involve any death receptor. Active caspase…

research product

Induction of Transglutaminase 2 by a Liver X Receptor/Retinoic Acid Receptor α Pathway Increases the Clearance of Apoptotic Cells by Human Macrophages

Rationale: Liver X receptors (LXRs) are oxysterol-activated nuclear receptors that are involved in the control of cholesterol homeostasis and inflammatory response. Human monocytes and macrophages express high levels of these receptors and are appropriate cells to study the response to LXR agonists. Objective: The purpose of this study was to identify new LXR targets in human primary monocytes and macrophages and the consequences of their activation. Methods and Results: We show that LXR agonists significantly increase the mRNA and protein levels of the retinoic acid receptor (RAR)α in primary monocytes and macrophages. LXR agonists promote RARα gene transcription through binding to a spec…

research product

Does bevacizumab impact anti-EGFR therapy efficacy in metastatic colorectal cancer?

IF 5.008; International audience; Anti-EGFR therapy and antiangiogenic therapies are used alone or in combination with chemotherapies to improve survival in metastatic colorectal cancer. However, it is unknown whether pretreatment with antiangiogenic therapy could impact on the efficacy of anti-EGFR therapy. We selected one hundred and twenty eight patients diagnosed with advanced colorectal cancer with a KRAS and NRAS unmutated tumor. These patients were treated with cetuximab or panitumumab alone or with chemotherapy as second or third-line. Univariate and multivariate Cox model analysis were performed to estimate the effect of a previous bevacizumab regimen on progression free survival a…

research product

Identification of proteins cleaved downstream of caspase activation in monocytes undergoing macrophage differentiation.

We have shown previously that caspases were specifically involved in the differentiation of peripheral blood monocytes into macrophages while not required for monocyte differentiation into dendritic cells. To identify caspase targets in monocytes undergoing macrophagic differentiation, we used the human monocytic leukemic cell line U937, whose macrophagic differentiation induced by exposure to 12-O-tetradecanoylphorbol 13-acetate (TPA) can be prevented by expression of the baculovirus caspase-inhibitory protein p35. A comparative two-dimensional gel proteomic analysis of empty vector- and p35-transfected cells after 12 h of exposure to 20 nm TPA, followed by mass spectrometry analysis, iden…

research product

Redistribution of CD95, DR4 and DR5 in rafts accounts for the synergistic toxicity of resveratrol and death receptor ligands in colon carcinoma cells.

The natural phytoalexin resveratrol (3, 5, 4'-trihydroxystilbene) exhibits both chemopreventive and antitumor activities through a variety of mechanisms. We have shown previously that resveratrol-induced apoptosis of a human colon cancer cell line involved the redistribution of CD95 (Fas/Apo-1) into lipid rafts. Here, we show that, in colon cancer cells that resist to resveratrol-induced apoptosis, the polyphenol also induces a redistribution of death receptors into lipid rafts. This effect sensitizes these tumor cells to death receptor-mediated apoptosis. In resveratrol-treated cells, tumor necrosis factor (TNF), anti-CD95 antibodies and TNF-related apoptosis-inducing ligand (TRAIL) activa…

research product

Liver X Receptor ligand cytotoxicity in colon cancer cells and not in normal colon epithelial cells depends on LXRβ subcellular localization

Increasing evidence indicates that Liver X Receptors (LXRs) have some anticancer properties. We recently demonstrated that LXR ligands induce colon cancer cell pyroptosis through an LXRβ-dependent pathway. In the present study, we showed that human colon cancer cell lines presented differential cytoplasmic localizations of LXRβ. This localization correlated with caspase-1 activation and cell death induction under treatment with LXR ligand. The association of LXRβ with the truncated form of RXRα (t-RXRα) was responsible for the sequestration of LXRβ in the cytoplasm in colon cancer cells. Moreover t-RXRα was not expressed in normal colon epithelial cells. These cells presented a predominantl…

research product

Dacarbazine-mediated upregulation of NKG2D ligands on tumor cells activates NK and CD8 T cells and restrains melanoma growth.

International audience; Dacarbazine (DTIC) is a cytotoxic drug widely used for melanoma treatment. However, the putative contribution of anticancer immune responses in the efficacy of DTIC has not been evaluated. By testing how DTIC affects host immune responses to cancer in a mouse model of melanoma, we unexpectedly found that both natural killer (NK) and CD8(+) T cells were indispensable for DTIC therapeutic effect. Although DTIC did not directly affect immune cells, it triggered the upregulation of NKG2D ligands on tumor cells, leading to NK cell activation and IFNγ secretion in mice and humans. NK cell-derived IFNγ subsequently favored upregulation of major histocompatibility complex cl…

research product

Docosahexaenoic Acid Induces Increases in [Ca2+]ivia Inositol 1,4,5-Triphosphate Production and Activates Protein Kinase Cγ and -δ via Phosphatidylserine Binding Site: Implication in Apoptosis in U937 Cells

We investigated, in monocytic leukemia U937 cells, the effects of docosahexaenoic acid (DHA; 22:6 n-3) on calcium signaling and determined the implication of phospholipase C (PLC) and protein kinase C (PKC) in this pathway. DHA induced dose-dependent increases in [Ca2+]i, which were contributed by intracellular pool, via the production of inositol-1,4,5-triphosphate (IP3) and store-operated Ca2+ (SOC) influx, via opening of Ca2+ release-activated Ca2+ (CRAC) channels. Chemical inhibition of PLC, PKCgamma, and PKCdelta, but not of PKCbeta I/II, PKCalpha, or PKCbetaI, significantly diminished DHA-induced increases in [Ca2+]i. In vitro PKC assays revealed that DHA induced a approximately 2-fol…

research product

Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth

International audience; Chemotherapeutic agents are widely used for cancer treatment. In addition to their direct cytotoxic effects, these agents harness the host's immune system, which contributes to their antitumor activity. Here we show that two clinically used chemotherapeutic agents, gemcitabine (Gem) and 5-fluorouracil (5FU), activate the NOD-like receptor family, pyrin domain containing-3 protein (Nlrp3)-dependent caspase-1 activation complex (termed the inflammasome) in myeloid-derived suppressor cells (MDSCs), leading to production of interleukin-1β (IL-1β), which curtails anticancer immunity. Chemotherapy-triggered IL-1β secretion relied on lysosomal permeabilization and the relea…

research product

Immunomodulation and Anti-inflammatory Roles of Polyphenols as Anticancer Agents

Cancers are the largest cause of mortality and morbidity in industrialized countries. Several new concepts have emerged in relation to mechanisms that contribute to the regulation of carcinogenesis processes and associated inflammatory effects such as the modulation of innate immune cells and adaptive immune cells that could infiltrate the tumor. In the tumor microenvironment, there is a delicate balance between antitumor immunity and tumor-originated proinflammatory activity, which weaken antitumor immunity. Consequently; modulation of immune cells and inflammatory processes represent attractive targets for therapeutic intervention in malignant diseases with the goal to restore the sensiti…

research product

5-Fluorouracil Selectively Kills Tumor-Associated Myeloid-Derived Suppressor Cells Resulting in Enhanced T Cell–Dependent Antitumor Immunity

AbstractMyeloid-derived suppressor cells (MDSC) accumulate in the spleen and tumor bed during tumor growth. They contribute to the immune tolerance of cancer notably by inhibiting the function of CD8(+) T cells. Thus, their elimination may hamper tumor growth by enhancing antitumor T-cell functions. We have previously reported that some anticancer agents relied on T cell–dependent anticancer responses to achieve maximal efficacy. However, the effect of anticancer agents on MDSC has remained largely unexplored. In this study, we observed that gemcitabine and 5-fluorouracil (5FU) were selectively cytotoxic on MDSC. In vivo, the treatment of tumor-bearing mice with 5FU led to a major decrease …

research product

STAT3 activation: A key factor in tumor immunoescape.

Cancer growth is controlled by cancer cells (cell intrinsic phenomenon), but also by the immune cells in the tumor microenvironment (cell extrinsic phenomenon). Thus cancer progression is mediated by the activation of transcription programs responsible for cancer cell proliferation, but also induced proliferation/activation of immunosuppressive cells such as Th17, Treg or myeloid derived suppressor cells (MDSCs). One of the key transcription factors involved in these pathways is the signal transducer and activator of transcription 3 (STAT3). In this review we will focus on STAT3 activation in immune cells, and how it impacts on tumor progression.

research product

The transcription factor IRF1 dictates the IL-21-dependent anticancer functions of TH9 cells

The TH9 subset of helper T cells was initially shown to contribute to the induction of autoimmune and allergic diseases, but subsequent evidence has suggested that these cells also exert antitumor activities. However, the molecular events that account for their effector properties are elusive. Here we found that the transcription factor IRF1 enhanced the effector function of TH9 cells and dictated their anticancer properties. Under TH9-skewing conditions, interleukin 1β (IL-1β) induced phosphorylation of the transcription factor STAT1 and subsequent expression of IRF1, which bound to the promoters of Il9 and Il21 and enhanced secretion of the cytokines IL-9 and IL-21 from TH9 cells. Further…

research product

Induction of pyroptosis in colon cancer cells by LXRβ.

Liver X receptors (LXRs) have been proposed to have some anticancer properties. We recently identified a new non-genomic role of LXRβ in colon cancer cells. Under LXR agonist treatment, LXRβ induces pyroptosis of these cells in vitro and in vivo, raising the possibility of targeting this isoform in cancer treatment.

research product

Fluorouracil and bevacizumab plus anakinra for patients with metastatic colorectal cancer refractory to standard therapies (IRAFU): a single-arm phase 2 study.

IF 5.503 (2017); International audience; In preclinical models, IL-1β inhibition could enhance the efficacy of fluorouracil (5-FU). In this phase 2 study, we assessed the activity and safety of 5-FU plus bevacizumab and anakinra (an IL-1β and α inhibitor) in patients with metastatic colorectal (mCRC) refractory to chemotherapy and anti-angiogenic therapy. Eligible patients had unresectable mCRC; were refractory or intolerant to fluoropyrimidine, irinotecan, oxaliplatin, anti-VEGF therapy, and anti-EGFR therapy (for tumors with wild-type KRAS). Patients were treated with a simplified acid folinic plus 5-FU regimen and bevacizumab (5 mg/kg) both administered by intravenous infusion for 30 min…

research product