DESIGN, SYNTHESIS AND ATOMIC/ELECTRONIC STRUCTURAL ANALYSIS OF HYBRID HALIDE PSEUDO-PEROVSKITES: PERSPECTIVES AND OPEN ISSUES FOR NOVEL THERMOELECTRIC MATERIALS
Solid-state compatibility of Ca:LaNbO4 with perovskite cathodes: Evidences from X-ray microspectroscopy
The solid-state compatibility between calcium-doped lanthanum niobate and three perovskite cathode materials was investigated using two X-ray microbeam techniques, micro X-ray fluorescence and micro X-ray absorption spectroscopy. The cathode powders (lanthanum strontium ferrite, either cobalt or copper-doped, and lanthanum strontium cobaltite) in contact with the dense electrolyte pellet were annealed at 1150 degrees C for 12-144 h to simulate the effect of thermal stresses due to fabrication and long-term operation. As a result, several interdiffusion phenomena were then observed on the bilayer cross-sections: in particular, the chemical state and coordination environment of calcium, iron,…
Highly Stable Thin Films Based on Novel Hybrid 1D (PRSH)PbX3 Pseudo-Perovskites
In this study, the structure and morphology, as well as time, ultraviolet radiation, and humidity stability of thin films based on newly developed 1D (PRSH)PbX3 (X = Br, I) pseudo-perovskite materials, containing 1D chains of face-sharing haloplumbate octahedra, are investigated. All films are strongly crystalline already at room temperature, and annealing does not promote further crystallization or film reorganization. The film microstructure is found to be strongly influenced by the anion type and, to a lesser extent, by the DMF/DMSO solvent volume ratio used during film deposition by spin-coating. Comparison of specular X-ray diffraction and complementary grazing incidence X-ray diffract…
Proton sponge lead halides containing 1D polyoctahedral chains
Hybrid one-dimensional lead halides, containing the protonated 1,8-bis(dimethylamino)naphthalene moiety (C14H19N2, monoprotonated "proton sponge"), were prepared by simple one-pot methods and investigated in terms of crystal structure, morphology, thermal stability and electronic properties. The as-precipitated (C14H19N2)PbBr3 and (C14H19N2)PbI3 species are isostructural and crystallize in the orthorhombic Pbca space group, resulting in 1D crystal phases with ([PbX3](-))(infinity) chains (built by face-sharing [PbX6] octahedra; X = Br, I), among which the (C14H19N2)(+) cations are inserted. The two compounds display complete miscibility in the solid state: both (C14H19N2)PbI2Br and (C14H19N…
Bi3+doping in 1D ((CH3)3SO)PbI3: A model for defect interactions in halide perovskites
The recently described monodimensional hybrid pseudo-perovskite ((CH3)3SO)PbI3 exhibits complete Pb2+/Bi3+ miscibility in the B site. Heterovalent substitution imposes that charge-compensating defects are introduced in the lattice as well. This paper reports the energetics of point defects and the interaction between charge-compensating defects that occur upon Bi3+ doping in ((CH3)3SO)PbI3. Periodic DFT simulations were employed to analyze the formation energy of Pb2+ vacancies, (CH3)3SO+ vacancies, iodide vacancies, or the insertion of interstitial iodide ions. Solid solutions with a large Bi3+ content were modeled considering different charge compensation defects (Pb2+ vacancies, (CH3)3SO…
Heterovalent BiIII/PbII ionic substitution in one-dimensional trimethylsulfoxonium halide pseudo-perovskites (X = I, Br)
We report on the synthesis and characterization of novel lead and bismuth hybrid (organic-inorganic) iodide and bromide pseudo-perovskites (ABX3) containing the trimethylsulfoxonium cation (CH3)3SO+ (TMSO) in the A site, Pb/Bi in the B site, and Br or I as X anions. All of these compounds are isomorphic and crystallize in the orthorhombic Pnma space group. Lead-based pseudo-perovskites consist of one-dimensional (1D) chains of face-sharing [PbX6] octahedra, while in the bismuth-based ones, the chains of [BiX6] are interrupted, with one vacancy every third site, leading to a zero-dimensional (0D) local structure based on separated [Bi2I9]3- dimers. Five solid solutions for the iodide with di…
Modeling bismuth insertion in 1D hybrid lead halide TMSO(Pb x Bi y )I3 pseudo-perovskites
Abstract The structures of the disordered 1D (pseudo-)perovskites of general TMSO(Pb x Bi y )I3 formulation [TMSO = (CH3)3SO+], obtained by doping the TMSOPbI3 species with Bi3+ ions, are investigated through the formulation of a statistical model of correlated disorder, which addresses the sequences of differently occupied BI6 face-sharing octahedra (B = Pb, Bi or vacant site) within ideally infinite [(BI3)−] n chains. The x-ray diffraction patterns simulated on the basis of the model are matched to the experimental traces, which show many broad peaks with awkward (nearly trapezoidal) shapes, under the assumption that the charge balance is fully accomplished within each chain. The analysis…
Beeswax/halloysite microparticles embedded within a geopolymeric layer for the protective coating of steel
A halloysite-based geopolymer filled with microwax particles was designed as a protective layer on steel substrates. Beeswax microparticles were obtained from the clay stabilized Pickering emulsions and they were homogeneously dispersed within the geopolymeric network, thus improving the coating physico-chemical properties. Specifically, this treatment changed the steel's wettability by increasing its hydrophobicity. Moreover, XRF analysis was conducted in order to have details on the chemical compositions.
Salphen metal complexes as potential anticancer agents: interaction profile and selectivity studies toward the three G-quadruplex units in the KIT promoter
DNA G-rich sequences can organize in four-stranded structures called G-quadruplexes (G4s). These motifs are enriched in significant sites within the human genomes, including telomeres and promoters of cancer related genes. For instance, KIT proto-oncogene promoter, associated with diverse cancers, contains three adjacent G4 units, namely Kit2, SP, and Kitt. Aiming at finding new and selective G-quadruplex binders, we have synthesized and characterized five non-charged metal complexes of Pt(II), Pd(II), Ni(II), Cu(II) and Zn(II) of a chlorine substituted Salphen ligand. The crystal structure of the Pt(II) and Pd(II) complexes was determined by XRPD. FRET measurements indicated that Pt(II) an…
The structural versatility of proton sponge bismuth halides
Hybrid halometalates containing lead, tin, bismuth and antimony and organic cations have recently shown a bevy of interesting photophysical properties. Aiming at finding chemically stable and thermally inert species, three halobismutate species of this class, crystallized with proton sponge-derived cations (PRSH), have been isolated as microcrystalline powders by mixing 1,8-bis(dimethylamino)-naphthalene (proton sponge, or PRS) and bismuth oxide in concentrated HX acids (X = Cl, Br and I). The two isomorphous (PRSH)3Bi2X9 (X = Br, I) species, containing isolated [Bi2X9]3- anions, are triclinic at room temperature and convert upon heating into a monoclinic structure through a displacive …
Ultralow thermal conductivity in 1D and 2D imidazolium-based lead halide perovskites
Low-dimensional hybrid organic–inorganic metal halide perovskites are rapidly emerging as a fascinating sub-class of the three-dimensional parent structures, thanks to their appealing charge and thermal transport properties, paired to better chemical and thermal stabilities. Extensive investigations of the thermal behavior in these systems are of paramount relevance to understand their optoelectronic and thermoelectric applications. Herein, we present a complete thermophysical characterization of imidazolium lead iodide, (IMI)PbI3, a 1D pseudo-perovskite with chains of face-sharing octahedra, and histammonium lead iodide, (HIST)PbI4, a 2D layered perovskite with corner-sharing octahedra. Up…
Solid–Solid Interfaces in Protonic Ceramic Devices: A Critical Review
The literature concerning protonic ceramic devices is critically reviewed focusing the reader's attention on the structure, composition, and phenomena taking place at solid-solid interfaces. These interfaces play a crucial role in the overall device performance, and the relevance of understanding the phenomena taking place at the interfaces for the further improvement of electrochemical protonic ceramic devices is therefore stressed. The grain boundaries and heterostructures in electrolytic membranes, the electrode-electrolyte contacts, and the interfaces within composite anode and cathode materials are all considered, with specific concern to advanced techniques of characterization and to …
Conformationally rigid molecular and polymeric naphthalene-diimides containing C6H6N2 constitutional isomers
Organic thin films based on naphthalenediimides (NDIs) bearing alkyl substituents have shown interesting properties for application in OLEDs, thermoelectrics, solar cells, sensors and organic electronics. However, the polymorphic versatility attributed to the flexibility of alkyl chains remains a challenging issue, with detrimental implications on the performances. Aryl analogues containing C6H6N2 constitutional isomers are herein investigated as one of the possible way-out strategies. The synthesis of molecular and polymeric species is described, starting from naphthaleneteracarboxyldianhydride with isomeric aromatic amines and hydrazine. The materials are fully characterized by spectrosco…
CCDC 2059772: Experimental Crystal Structure Determination
Related Article: Vincenzo Mirco Abbinante, Gonzalo García-Espejo, Gabriele Calabrese, Silvia Milita, Luisa Barba, Diego Marini, Candida Pipitone, Francesco Giannici, Antonietta Guagliardi, Norberto Masciocchi|2021|J.Mater.Chem.C|9|10875|doi:10.1039/d1tc00564b
CCDC 2069442: Experimental Crystal Structure Determination
Related Article: Candida Pipitone, Francesco Giannici, Antonino Martorana, Gonzalo Garc��a-Espejo, Silvia Carlotto, Maurizio Casarin, Antonietta Guagliardi, Norberto Masciocchi|2021|J.Phys.Chem.C|125|11728|doi:10.1021/acs.jpcc.1c02571
CCDC 2153969: Experimental Crystal Structure Determination
Related Article: Gonzalo García-Espejo, Candida Pipitone, Francesco Giannici, Norberto Masciocchi|2022|J.Solid State Chem.|312|123165|doi:10.1016/j.jssc.2022.123165
CCDC 2012750: Experimental Crystal Structure Determination
Related Article: Candida Pipitone, Francesco Giannici, Antonino Martorana, Federica Bertolotti, Gabriele Calabrese, Silvia Milita, Antonietta Guagliardi, Norberto Masciocchi|2021|CrystEngComm|23|1126|doi:10.1039/D0CE01695K
CCDC 2059771: Experimental Crystal Structure Determination
Related Article: Vincenzo Mirco Abbinante, Gonzalo García-Espejo, Gabriele Calabrese, Silvia Milita, Luisa Barba, Diego Marini, Candida Pipitone, Francesco Giannici, Antonietta Guagliardi, Norberto Masciocchi|2021|J.Mater.Chem.C|9|10875|doi:10.1039/d1tc00564b
CCDC 2153967: Experimental Crystal Structure Determination
Related Article: Gonzalo García-Espejo, Candida Pipitone, Francesco Giannici, Norberto Masciocchi|2022|J.Solid State Chem.|312|123165|doi:10.1016/j.jssc.2022.123165
CCDC 2069441: Experimental Crystal Structure Determination
Related Article: Candida Pipitone, Francesco Giannici, Antonino Martorana, Gonzalo Garc��a-Espejo, Silvia Carlotto, Maurizio Casarin, Antonietta Guagliardi, Norberto Masciocchi|2021|J.Phys.Chem.C|125|11728|doi:10.1021/acs.jpcc.1c02571
CCDC 2153968: Experimental Crystal Structure Determination
Related Article: Gonzalo García-Espejo, Candida Pipitone, Francesco Giannici, Norberto Masciocchi|2022|J.Solid State Chem.|312|123165|doi:10.1016/j.jssc.2022.123165
CCDC 2069440: Experimental Crystal Structure Determination
Related Article: Candida Pipitone, Francesco Giannici, Antonino Martorana, Gonzalo Garc��a-Espejo, Silvia Carlotto, Maurizio Casarin, Antonietta Guagliardi, Norberto Masciocchi|2021|J.Phys.Chem.C|125|11728|doi:10.1021/acs.jpcc.1c02571
CCDC 2069439: Experimental Crystal Structure Determination
Related Article: Candida Pipitone, Francesco Giannici, Antonino Martorana, Gonzalo Garc��a-Espejo, Silvia Carlotto, Maurizio Casarin, Antonietta Guagliardi, Norberto Masciocchi|2021|J.Phys.Chem.C|125|11728|doi:10.1021/acs.jpcc.1c02571
CCDC 2059770: Experimental Crystal Structure Determination
Related Article: Vincenzo Mirco Abbinante, Gonzalo García-Espejo, Gabriele Calabrese, Silvia Milita, Luisa Barba, Diego Marini, Candida Pipitone, Francesco Giannici, Antonietta Guagliardi, Norberto Masciocchi|2021|J.Mater.Chem.C|9|10875|doi:10.1039/d1tc00564b
CCDC 2012751: Experimental Crystal Structure Determination
Related Article: Candida Pipitone, Francesco Giannici, Antonino Martorana, Federica Bertolotti, Gabriele Calabrese, Silvia Milita, Antonietta Guagliardi, Norberto Masciocchi|2021|CrystEngComm|23|1126|doi:10.1039/D0CE01695K
CCDC 2012752: Experimental Crystal Structure Determination
Related Article: Candida Pipitone, Francesco Giannici, Antonino Martorana, Federica Bertolotti, Gabriele Calabrese, Silvia Milita, Antonietta Guagliardi, Norberto Masciocchi|2021|CrystEngComm|23|1126|doi:10.1039/D0CE01695K
CCDC 2059769: Experimental Crystal Structure Determination
Related Article: Vincenzo Mirco Abbinante, Gonzalo García-Espejo, Gabriele Calabrese, Silvia Milita, Luisa Barba, Diego Marini, Candida Pipitone, Francesco Giannici, Antonietta Guagliardi, Norberto Masciocchi|2021|J.Mater.Chem.C|9|10875|doi:10.1039/d1tc00564b