0000000000010713
AUTHOR
Vincenzo
Multi-scale structural analysis of xyloglucan colloidal dispersions and hydro-alcoholic gels
Xyloglucans are highly branched, hydroxyl rich polyglucans that for their abundance in nature, biocompatibility, film forming and gelation ability may take a prominent role in the design and fabrication of biomedical devices, including in situ forming scaffolds for tissue engineering, wound dressings and epidermal sensors. The understanding and exploitation of their self-assembly behavior is key for the device performance optimization. A multi-scale analysis, conducted combining small-angle X-ray scattering, both static and dynamic light scattering at large and small angles, and rheological measurements, provides a description of the supramolecular organization of this biopolymer, from the …
Development of injectable and durable kefiran hydro-alcoholic gels.
Injectable, in-situ forming kefiran gels have been developed for potential applications as implantable drug delivery devices or scaffolds for tissue regeneration. Concentrated solutions (4, 5 and 6%w) of kefiran, extracted from kefir grains, have been assessed in term of viscosity and injectability through G26 syringe needles, and for their ability to undergo gelation upon mixing with different alcohols. Propylene glycol (PG) has been selected as gelling agent because it ensures homogenous gelation in relatively short times (from few minutes up to 6 h). The investigation of the rheological behavior of kefiran/PG gels varying polymer concentration and temperature (25 degrees C and 37 degrees…