0000000000012523

AUTHOR

Carmen Guillem

Expanding the atrane route: Generalized surfactant-free synthesis of mesoporous nanoparticulated xerogels

Abstract A diversity of silica-based and non-silica nanoparticulated mesoporous xerogels have been synthesized from aqueous solution using a surfactant-free strategy, and starting from molecular atrane complexes as precursors. This approach constitutes an extension of the “atrane route” previously described for the surfactant-assisted synthesis of mesoporous materials, and allows us to unify the multiplicity of protocols described for the preparation of conventional xerogels. In fact, we have used exactly the same preparative conditions for obtaining all the compositions reported here. The xerogels synthesized in this way include pure silica (UVM-11), aluminosilicates and titanosilicates (M…

research product

Molecular precursors of mesostructured silica materials in the atrane route: A DFT/GIAO/NBO theoretical study

Abstract Quantum chemical calculations using density functional theory have been carried out to investigate two assumed molecular precursors and identified as silatranes (N[OCH2CH2]3Si–OCH2CH2N–(CH2CH2OH)2 and N[OCH2CH2]3Si–OCH2CH2N–(CH2CH2OH)2Na+) which are present in the synthesis of mesoporous silica based material namely “the atrane route”. One of the ways in this synthesis leads to the well-known MCM-41. Additionally, in this work has been also investigated two others molecules such as triethanolamine (TEAH3) and sodatrane which are present in the medium. Gas phase and solution equilibrium geometries of the previous molecules were fully optimized at B3LYP level, modeling solvent effect…

research product

Pore Length Effect on Drug Uptake and Delivery by Mesoporous Silicas

The capability of UVM-7 silicas to work as supports for drug storage and delivery is investigated using ibuprofen as a model. UVM-7 silicas are surfactant-assisted synthesised mesoporous materials displaying a characteristic bimodal pore architecture related to their nanoparticulate texture. Strict control of the drug-charge protocol allows the achievement of high ibuprofen loads, not only because of the availability of intra-nanoparticle mesopores and large textural voids, but also owing to the decrease in pore-blocking effects (with regard to related unimodal mesoporous materials such as MCM-41) achieved through the shortening of the mesopore length. The UVM-7/ibuprofen nanocomposites are…

research product

Enlarged pore size in nanoparticulated bimodal porous silicas: Improving accessibility

Abstract Mass-transfer kinetics seems to be highly favored in siliceous materials constructed from the aggregation of mesoporous nanoparticles. Besides intra-particle mesopores, over the course of the aggregation process an inter-particle (textural) large pore system is generated. Diffusion constrains through the resulting hierarchically structured pore systems mainly depend on the characteristics of the intra-particle mesopores. By using alkanes as swelling agents, we have been able to significantly increase the intra-particle mesopore size in previously well characterized UVM-7 materials. The Winsor-III-like behavior associated with the presence of alkanes in the hydro-alcoholic reaction …

research product

Enhanced manganese content in Mn-MCM-41 mesoporous silicas

The use of triethanolamine containing complexes of Si and Mn as hydrolytic precursors allows the synthesis of doped mesoporous silicas in which the Mn content can be modulated up to reach a minimum value of the Si/Mn molar ratio of 3. This limit value corresponds to a Mn relative content significantly higher than those reported to date for similar materials (Si/Mn = 6). According to XRD, TEM and porosity data, the mesoporous nature typical of the MCM-41 silicas is retained even for the samples having the highest Mn content.

research product

One‐Pot Synthesis of a New High‐Aluminium‐Content Super‐Microporous Aluminosilicate

A new super-microporous aluminosilicate having a high aluminium content (Si/Al ca. 1) has been prepared through a surfactant-assisted procedure with the use of a commercially available binary precursor (di-sec-butoxyaluminooxytriethoxysilane) as a single source of both Al and Si. The formation of super-micropores is a result of a significant network shrinkage associated with the thermal elimination of the surfactant. This solid has been studied by X-ray powder diffraction, electron microscopy, nuclear magnetic resonance spectroscopy and porosimetry. A preliminary analysis of the acidity and the catalytic activity of the super-microporous solid for the selective catalytic reduction of NOx is…

research product

Enzyme-Responsive Intracellular Controlled Release Using Nanometric Silica Mesoporous Supports Capped with "Saccharides"

The synthesis of new capped silica mesoporous nanoparticles for on-command delivery applications is described. The gate-like functional hybrid systems consisted of nanoscopic MCM-41-based materials functionalized on the pore outlets with different “saccharide” derivatives and a dye contained in the mesopores. A series of hydrolyzed starch products as saccharides were selected. The mesoporous silica nanoparticles S1, S2, and S3 containing the grafted starch derivatives Glucidex 47, Gludicex 39, and Glucidex 29 were synthesized. Additionally, for comparative purposes solid S4 containing lactose was prepared. Delivery studies in pure water in the presence of pancreatin or -D-galactosidase were…

research product

ZnO nanoparticles embedded in UVM-7-like mesoporous silica materials: Synthesis and characterization

Abstract ZnO nanodomains embedded in bimodal mesoporous silica (UVM-7) materials with high Zn content (4≤Si/Zn≤30) have been synthesized by an one-pot surfactant-assisted procedure from a hydro alcoholic medium using a cationic surfactant (CTMABr=cetyltrimethylammonium bromide) as structural directing agent, and starting from molecular atrane complexes of Zn and Si as hydrolytic inorganic precursors. This chemical procedure allows optimizing the dispersion of the ZnO particles in the silica walls. The bimodal mesoporous nature of the final high surface area nano-sized materials is confirmed by XRD, TEM, and N2 adsorption–desorption isotherms. The small intra-particle mesopore system is due …

research product

Large monolithic silica-based macrocellular foams with trimodal pore system.

Silica-based materials with hierarchical pore systems at three different length scales (small mesopores–large mesopores–macropores) have been prepared through a nanotectonic approach by using mesoporous nanoparticles as building blocks; the resulting materials present a highly accessible foam-like architecture and can be prepared as large monoliths. Huerta Morillo, Lenin Jose, Lenin.Huerta@uv.es ; Latorre Saborit, Julio, Julio.Latorre@uv.es ; Beltran Porter, Aurelio, Aurelio.Beltran@uv.es ; Beltran Porter, Daniel, Daniel.Beltran@uv.es ; Amoros del Toro, Pedro Jose, Pedro.Amoros@uv.es

research product

Silica-based macrocellular foam monoliths with hierarchical trimodal pore systems

Abstract Silica-based large monoliths exhibiting a trimodal hierarchical pore system have been successfully prepared through a nanotectonic approach starting from sub-micro/nanometric mesoporous particles (as building blocks), and using a polyurethane foam as macrotemplate. Large trimodal pieces with macrocellular like interconnected macropores in the micrometer range are a mineralized replica of the polyurethane foam. Textural large-mesopores/macropores (in the 20–70 nm range) have their origin in the inter-particle voids. The small intra-particle mesopore system (with pore diameters around 2–3 nm) is due to the supramolecular templating effect of the surfactant.

research product

Improving epoxide production using Ti-UVM-7 porous nanosized catalysts

Nanosized Ti-UVM-7 materials with a hierarchical system of pores at two different length scales have been prepared through a one-pot procedure by using a simple template agent; the catalytic activity and selectivity of the resulting materials in bulky olefin epoxidation by organic peroxides are the highest reported to date.

research product

Chromo-Fluorogenic Detection of Nitroaromatic Explosives by Using Silica Mesoporous Supports Gated with Tetrathiafulvalene Derivatives

[EN] Three new hybrid gated mesoporous materials (SN3-1, SNH2-2, and SN3-3) loaded with the dye [Ru(bipy)(3)](2+) (bipy=bipyridine) and capped with different tetrathiafulvalene (TTF) derivatives (having different sizes and shapes and incorporating different numbers of sulfur atoms) have been prepared. The materials SN3-1 and SN3-3 are functionalized on their external surfaces with the TTF derivatives 1 and 3, respectively, which were attached by employing the click chemistry reaction, whereas SNH2-2 incorporates the TTF derivative 2, which was anchored to the solid through an amidation reaction. The final gated materials have been characterized by standard techniques. Suspensions of these s…

research product

Mesoporous aluminum phosphite

Abstract High surface area pure mesoporous aluminum-phosphorus oxide-based derivatives have been synthesized through an S+I− surfactant-assisted cooperative mechanism by means of a one-pot preparative procedure from aqueous solution and starting from aluminum atrane complexes and phosphoric and/or phosphorous acids. A soft chemical extraction procedure allows opening the pore system of the parent as-prepared materials by exchanging the surfactant without mesostructure collapse. The nature of the pore wall can be modulated from mesoporous aluminum phosphate (ALPO) up to total incorporation of phosphite entities (mesoporous aluminum phosphite), which results in a gradual evolution of the acid…

research product

Nanoparticulated Silicas with Bimodal Porosity: Chemical Control of the Pore Sizes

Nanoparticulated bimodal porous silicas (NBSs) with pore systems structured at two length scales (meso- and large-meso-/macropores) have been prepared through a one-pot surfactant-assisted procedure by using a simple template agent and starting from silicon atrane complexes as hydrolytic inorganic precursors. The final bulk materials are constructed by an aggregation of pseudospherical mesoporous primary nanoparticles process, over the course of which the interparticle (textural) large pore system is generated. A fine-tuning of the procedural variables allows not only an adjustment of the processes of nucleation and growth of the primary nanoparticles but also a modulation of their subseque…

research product

Ordered Mesoporous Silicon Oxynitrides

research product

Hydrolysis of DCNP (a Tabun mimic) catalyzed by mesoporous silica nanoparticles

[EN] The hydrolysis of diethylcyanophosphonate, DCNP (a Tabun simulant) in the presence of mesoporous silica nanoparticles (MSN) has been studied in acetonitrile:water (99.5:0.5 v/v) mixtures using 31P NMR as a suitable technique to follow the DCNP hydrolysis. MSN alone was not capable to induce DCNP hydrolysis, yet MSN in combination with the presence of the bases potassium carbonate, triethylamine or DABCO enhanced DCNP degradation. When MSN was used combined with K2CO3, a hydrolysis of ca. 95% of the initial DCNP after 60 min was observed. In the presence of DABCO, MSN was able to induce the hydrolysis of ca. 90% of DCNP after the same time. However, the DCNP hydrolysis using MSN in the …

research product

Stability of different mesoporous silica particles during an in vitro digestion

Mesoporous silica materials have the ability to entrap drugs, nutrients and functional biomolecules and can be able to act as smart delivery systems capable to control and target the release of their cargo in a particular part of the gastrointestinal tract when administrated orally. However, the aptness of these encapsulation supports in in vivo oral controlled release relies on their chemical stability through the digestive tube. In this context, we have evaluated the stability of four different mesoporous silica particles, frequently used as encapsulating supports, during an in vitro digestion process comprising buccal, stomach and intestinal phases. Results showed that after 4 h of diges…

research product

The First Pure Mesoporous Aluminium Phosphonates and Diphosphonates − New Hybrid Porous Materials

Organophosphorus moieties have been incorporated into mesoporous ALPOs through a one-pot surfactant-assisted procedure leading, for the first time, to periodic mesoporous aluminium phosphonates and diphosphonates. The number of organic groups on the surface or in the network can be modulated continuously up to the maximum incorporation level of the respective organophosphorus entities (100 %). (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004)

research product

Enhanced polyurethanes based on different polycarbonatediols

Segmented thermoplastic polyurethanes (PUs) were prepared from 4,4′-diphenylmethane diisocyanate (MDI), 1,4-butanediol (BD) and different macrodiols with a molar mass of 1000. Properties of those PUs based on polycarbonatediol (PCD) were compared with their homologous based on polyesterdiol and polyetherdiol as macrodiols. The proportion used in this study was macrodiol:BD:MDI = 1:2:3, in mole ratio. The hard segment weight percentage is 48 wt% for different PUs. Thermogravimetric analysis, differential scanning calorimetry, differential mechanical analysis, Fourier transform infrared-attenuated total reflection spectroscopy, as well as mechanical properties and retention on flexural prope…

research product

Layered-Expanded Mesostructured Silicas: Generalized Synthesis and Functionalization

Mesostructured layered silicas have been prepared through a surfactant-assisted procedure using neutral alkylamines as templates and starting from atrane complexes as hydrolytic inorganic precursors. By adjusting the synthetic parameters, this kinetically controlled reproducible one-pot method allows for obtaining both pure and functionalized (inorganic or organically) lamellar silica frameworks. These are easily deconstructed and built up again, which provides a simple way for expanding the interlamellar space. The materials present high dispersibility, which results in stable colloidal suspensions.

research product

Tetrathiafulvalene-Capped Hybrid Materials for the Optical Detection of Explosives

[EN] Mesoporous silica microparticles capped with TTF moieties and containing a ruthenium dye in the pores were used for the turn-on optical detection of the nitroaromatic explosives Tetryl and TNT via a selective pore uncapping and release of the entrapped dye.

research product

Towards the Loewenstein limit (Si/Al = 1) in thermally stable mesoporous aluminosilicates

The use of complexing agents to generate polynuclear precursor species containing both Al and Si allows the synthesis of thermally stable mesoporous aluminosilicates including solely tetrahedrally coordinated aluminium, in which the Si/Al ratio can be modulated down to a minimum Si/Al value of 1.06(4). Cabrera Medina, Saul, Saul.Cabrera@uv.es ; El Haskouri, Jamal, Jamal.Haskouri@uv.es ; Latorre Saborit, Julio, Julio.Latorre@uv.es ; Beltran Porter, Aurelio, Aurelio.Beltran@uv.es ; Beltran Porter, Daniel, Daniel.Beltran@uv.es ; Amoros del Toro, Pedro Jose, Pedro.Amoros@uv.es

research product

Amidase-responsive controlled release of antitumoral drug into intracellular media using gluconamide-capped mesoporous silica nanoparticles

MCM-41 silica nanoparticles were used as inorganic scaffolding to prepare a nanoscopic-capped hybrid material S1, which was able to release an entrapped cargo in the presence of certain enzymes, whereas in the absence of enzymes, a zero release system was obtained. S1 was prepared by loading nanoparticles with Safranine O dye and was then capped with a gluconamide derivative. In the absence of enzymes, the release of the dye from the aqueous suspensions of S1 was inhibited as a result of the steric hindrance imposed by the bulky gluconamide derivative, the polymerized gluconamide layer and the formation of a dense hydrogen-bonded network around the pore outlets. Upon the addition of amidase…

research product

Silica-based powders and monoliths with bimodal pore systemsElectronic supplementary information (ESI) available: UV–Vis spectrum of sample 3. See http://www.rsc.org/suppdata/cc/b1/b110883b/

Porous pure and doped silicas with pore sizes at two length scales (meso/macroporous) have been prepared and shaped both as powders and monoliths through a one-pot surfactant assisted procedure by using a simple template agent and starting from atrane complexes as inorganic precursors.

research product

Structure-property relationships of polycarbonate diol-based polyurethanes as a function of soft segment content and molar mass

Segmented thermoplastic polyurethanes (PUs) have been synthesized with polycarbonate diol as soft segment and 4,4′-diphenylmethane diisocyanate and butanediol as hard segment. Two different series employing two different soft-segment molar mass, 1000 and 2000 g/mol, and by changing the hard-segment content from 32 to 67% have been investigated with the aim to elucidate the effect of the different content variations on the properties. Morphological, thermal, and mechanical properties have been studied by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), wide angle X-ray diffraction, atomic force microscopy, tensile and…

research product

Efficient Sc triflate mesoporous-based catalysts for the synthesis of 4,4′-methylenedianiline from aniline and 4-aminobenzylalcohol

Abstract Sc triflate mesoporous-based catalysts have been prepared using a two-step strategy (i.e., Atrane method) based on the formation of the hierarchic bimodal porosity in the first step and the formation of Sc triflate complexes at the materials surface in the second step. All solids were analyzed by EPMA, surface area, and pore size values, XRD, TEM, FTIR, and 45Sc NMR static spectra. The catalysts have been investigated in the synthesis of 4,4′-methylenedianiline (4,4′-MDA) from aniline and 4-aminobenzylalcohol. 4,4′-MDA was obtained with selectivities over 85.0% for a conversion of aniline of 31%, at 80 °C and after 24 h. Using microwaves, selectivities of 90% in 4,4′-MDA were reach…

research product

High‐Zirconium‐Content Nano‐Sized Bimodal Mesoporous Silicas

Silica-based nanoparticulated bimodal mesoporous materials with high Zr content (43 ≥ Si/Zr ≥ 4) have been synthesized by a one-pot surfactant-assisted procedure from a hydroalcoholic medium using a cationic surfactant (CTMABr = cetyltrimethylammonium bromide) as structure-directing agent, and starting from molecular atrane complexes of Zr and Si as hydrolytic inorganic precursors. This preparative technique allows optimization of the dispersion of the Zr guest species in the silica walls. The bimodal mesoporous nature of the final high surface area nano-sized materials is confirmed by XRD, TEM, and N2 adsorption–desorption isotherms. The small intraparticle mesopore system (with pore sizes…

research product

Comparison of the solid-phase extraction efficiency of a bounded and an included cyclodextrin-silica microporous composite for polycyclic aromatic hydrocarbons determination in water samples.

Solid-phase extraction is one of the most important techniques for sample purification and concentration. A wide variety of solid phases have been used for sample preparation over time. In this work, the efficiency of a new kind of solid-phase extraction adsorbent, which is a microporous material made from modified cyclodextrin bounded to a silica network, is evaluated through an analytical method which combines solid-phase extraction with high-performance liquid chromatography to determine polycyclic aromatic hydrocarbons in water samples. Several parameters that affected the analytes recovery, such as the amount of solid phase, the nature and volume of the eluent or the sample volume and …

research product

Scale-up low-cost synthesis of bimodal mesoporous silicas

Porous pure and doped silicas with pore sizes at two length scales (meso/macroporous) have been prepared through a large scale one-pot surfactant assisted reproducible procedure by using a simple template agent and starting from non-expensive sodium silicate as silicon source. Together with the relative low-cost of the reagents we have used, the simplicity of this method, which moreover is scalable and provides high yields, could be a strong argument for considering its suitability for the production of bimodal porous silicas. Additionally, we present a simple chemical scheme that allows directing the synthesis towards different related materials including both bimodal nanoparticulated meso…

research product

One‐Pot Synthesis of Superparamagnetic CoO‐MCM‐41 Nanocomposites with Uniform and Highly Dispersed Magnetic Nanoclusters

Superparamagnetic CoO-MCM-41 mesoporous nanocomposites, with variable cobalt amounts, in the form of well-dispersed CoO-like clusters, were prepared in a large compositional range by a one-step reproducible procedure employing co-hydrolysis and co-condensation of the inorganic precursors in a water/triethanolamine medium. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004)

research product

Theoretical study of oligomeric alumatranes present in the chemistry of materials from micro to mesoporous molecular sieves and alumina composites

Quantum chemical calculations using density functional theory have been carried out to investigate molecular precursors based on alumatranes which are one of the components with silatranes for the preparation of mesoporous aluminosilicate materials. In the same way, some oligomeric alumatranes of this study take part in chemical syntheses related to materials such as zeolites and alumina composite. Gas phase and solution equilibrium geometries of the alumatrane precursors were fully optimized at B3LYP level, modeling solvent effects using a self-consistent reaction field (SCRF). From these optimized geometries, calculations of the 1 H, 13 C and 27 Al NMR chemical shifts at GIAO/B3LYP/6-31G(…

research product

Bases for the synthesis of nanoparticulated silicas with bimodal hierarchical porosity

Porous silicas with pore sizes at two length scales (meso and large meso/macroporous) have been prepared through a one-pot surfactant assisted procedure by using a simple template agent and starting from silicon atrane complexes as hydrolytic inorganic precursors. The special organization of these bimodal porous silicas can be related to the nanometric character of their constituent mesoporous particles. Whereas the small intra-particle mesopore system is generated by the templating effect of the surfactant, the large pore system is defined by inter-particle voids. We have studied the effect of different procedural parameters on the small pore system and also on the nucleation and growth of…

research product

A New Approach to Chemosensors for Anions Using MCM-41 Grafted with Amino Groups

research product

Design, characterization and comparison of materials based on β and γ cyclodextrin covalently connected to microporous silica for environmental analysis

Abstract Determination of organic pollutants in environmental samples presents great difficulties due to the lack of sensitivity and selectivity in many of the existing analytical methods. In this work, the efficiency of materials based on silica structures containing bounded γ-cyclodextrin has been evaluated to determinate phenolic compounds and polycyclic aromatic hydrocarbons in air and water samples, respectively, in comparison with materials made of β-cyclodextrin. According to the results obtained for the material characterization, the new γ-cyclodextrin solid phase does not apparently present any porosity when used in air samples, but it has been shown to work efficiently for the pre…

research product

Control of the pore wall thickness and thermal stability in low-cost bimodal porous silicas

Abstract A new hierarchical bimodal mesoporous silica, labelled as UVM-12 (acronym of University of Valencia Materials), has been prepared by using a solution of sodium silicate as low-cost silicon source. The final self-assembling between cationic micelles of CTAB and anionic inorganic Si-based oligomers occurs in a homogeneous aqueous medium. The reaction is carried out from low-sized building blocks through a bottom-up approach. The UVM-12 solids combine two mesopore systems according to N2 adsorption–desorption isotherms, what is corroborated by TEM micrographs and XRD patterns. This material has been inorganically modified by incorporation of Al or Ti (M-UVM-12, M = Al, Ti) without alt…

research product

Samplers for VOCs in air based on cyclodextrin–silica hybrid microporous solid phases

Samplers for VOCs in air based on cyclodextrin-silica hybrid microporous solid phases are proposed. The solid phase preparation is very easy and inexpensive. Proposed samplers compared with other solid phases present the advantages of a wider range of operative conditions for VOCs desorption. Samplers are tested based on results for the determination of benzene, toluene, ethylbenzene and o-xylene, m-xylene and p-xylene (BTEX) in air. Operational parameters are optimized and quantitative recovery is obtained using a solid phase from 2-hydroxypropyl-β-cyclodextrin and acetonitrile as the extraction solvent. The recoveries obtained are 89 ± 4%, 90 ± 6%, 91 ± 2%, 87.0 ± 0.9%, 88 ± 4%, and 88 ± …

research product

Biomimetic chitosan-mediated synthesis in heterogeneous phase of bulk and mesoporous silica nanoparticles

Both bulk and mesoporous silica nanoparticles can be obtained in the form of granular aggregates using chitosan flakes as additive under very soft biomimetic reaction conditions. Puchol Estors, Victoria, Victoria.Puchol@uv.es ; El Haskouri, Jamal, Jamal.Haskouri@uv.es ; Latorre Saborit, Julio, Julio.Latorre@uv.es ; Beltran Porter, Aurelio, Aurelio.Beltran@uv.es ; Beltran Porter, Daniel, Daniel.Beltran@uv.es ; Amoros del Toro, Pedro Jose, Pedro.Amoros@uv.es

research product

Tuning the pore size from micro- to meso-porous in thermally stable aluminophosphates

Thermally stable porous aluminophosphates (ICMUV-3) with P/Al molar ratios in the range 0.15 <= P/Al <= 0.75 and showing continuously adjustable pore sizes from 13 to 37 Å have been prepared through a surfactant-assisted procedure without changing the surfactant length and/or addition of organic expansors. Cabrera Medina, Saul, Saul.Cabrera@uv.es ; El Haskouri, Jamal, Jamal.Haskouri@uv.es ; Beltran Porter, Aurelio, Aurelio.Beltran@uv.es ; Beltran Porter, Daniel, Daniel.Beltran@uv.es ; Amoros del Toro, Pedro Jose, Pedro.Amoros@uv.es

research product

Supramolecular capping-ligand effect of lamellar silica mesostructures for the one-pot synthesis of highly dispersed ZnO nanoparticles

ZnO?SiO2 lamellar nanocomposites with high zinc content (5?Si/Zn?50) have been synthesized through a one-pot surfactant-assisted procedure from aqueous solution and starting from molecular atrane complexes of Zn and Si as inorganic hydrolytic precursors. This approach allows optimization of the dispersion of the ZnO nanodomains in the silica sheets. The nature of the layered silica materials has been confirmed by x-ray diffraction. Spectroscopic (ultraviolet?visible and photoluminescence) study of these layered silica materials shows that, regardless of the Si/Zn ratio, Zn atoms are organized in well-dispersed, uniform ZnO nanodomains (about 1.2?nm) partially embedded within the silica shee…

research product

Generalised syntheses of ordered mesoporous oxides: the atrane route

Abstract A new simple and versatile technique to obtain mesoporous oxides is presented. While implying surfactant-assisted formation of mesostructured intermediates, the original chemical contribution of this approach lies in the use of atrane complexes as precursors. Without prejudice to their inherent unstability in aqueous solution, the atranes show a marked inertness towards hydrolysis. Bringing kinetic factors into play, it becomes possible to control the processes involved in the formation of the surfactant–inorganic phase composite micelles, which constitute the elemental building blocks of the mesostructures. Independent of the starting compositional complexity, both the mesostructu…

research product

Mesosynthesis of ZnO-SiO(2) porous nanocomposites with low-defect ZnO nanometric domains.

Silica-based ZnO-MCM-41 mesoporous nanocomposites with high Zn content (5≤Si/Zn≤50) have been synthesized by a one-pot surfactant-assisted procedure from aqueous solution using a cationic surfactant (CTMABr = cetyltrimethylammonium bromide) as structure-directing agent, and starting from molecular atrane complexes as inorganic hydrolytic precursors. This preparative technique allows optimization of the dispersion of the ZnO nanodomains in the silica walls. The mesoporous nature of the final materials is confirmed by x-ray diffraction (XRD), transmission electron microscopy (TEM) and N(2) adsorption-desorption isotherms. The ZnO-MCM-41 materials show unimodal pore size distributions without …

research product

Synthesis and Characterization of SiC/MC/C Ceramics (M = Ti, Zr, Hf) Starting from Totally Non-oxidic Precursors

The reaction of poly(dimethylsilane) (PDMS) and poly(dimethylcarbosilane) (PCS) with bis(cyclopentadienyl)M dichloride Cp2MCl2 (M ) Ti, Zr, Hf) complexes has been used as a new route to obtain ceramic materials based on SiC-containing M. The reaction is completed at a relatively low temperature, 900 °C, yielding the corresponding amorphous SiC/MC ceramics which have been characterized by means of 29 Si MAS NMR. These amorphous materials have been treated at higher temperatures, 1350 °C, under a purified argon atmosphere, yielding partially crystallized products which have been studied by X-ray powder diffraction and 29 Si MAS NMR. The effect of the composition of the mixture of precursors is

research product

Low-Cost Synthesis of Bimodal Mesoporous Silica-Based Materials by Pseudomorphic Transformation.

Nanoparticulate bimodal porous silica-based materials have been prepared through a surfactant-assisted procedure by using a simple template and starting from inexpensive sodium silicate as silicon source. Different procedural variables, such as pH or the nature and concentration of the surfactant, have been explored to optimize the preparative protocol, which allows, in turn, improved understanding of the formation process. The final bulk materials (called UVM-10 or M-UVM-10) are formed by pseudomorphic transformation of fresh silica-based xerogels under mild basic conditions. The UVM-10 architecture is constructed from small mesoporous nanoparticles, the aggregation of which generates a di…

research product