0000000000013431
AUTHOR
A. Di Matteo
Measurement of the cosmic-ray energy spectrum above 2.5×1018 eV using the Pierre Auger Observatory
We report a measurement of the energy spectrum of cosmic rays for energies above 2.5×10^18 eV based on 215,030 events recorded with zenith angles below 60°. A key feature of the work is that the estimates of the energies are independent of assumptions about the unknown hadronic physics or of the primary mass composition. The measurement is the most precise made hitherto with the accumulated exposure being so large that the measurements of the flux are dominated by systematic uncertainties except at energies above 5×10^19 eV. The principal conclusions are(1) The flattening of the spectrum near 5×10^18 eV, the so-called "ankle,"is confirmed.(2) The steepening of the spectrum at around 5×10^19…
A Novel Mathematical Model For TLCD: Theoretical And Experimental Investigations
In this paper, a novel mathematical model for the Tuned Liquid Column Damper (TLCD) is presented. Taking advantages of fractional derivatives and related concepts, a new equation of motion of the liquid inside the TLCD is obtained. Experimental laboratory tests have been performed in order to validate the proposed linear fractional formulation. Comparison among experimental results, numerical obtained using the classical formulation and numerical with the new linear fractional formulation are reported. Results in frequency domain show how the new linear fractional formulation can predict the real behavior of such a passive vibration control system, more correctly than the classical mathemat…
Arbitrarily shaped plates analysis via Line Element-Less Method (LEM)
Abstract An innovative procedure is introduced for the analysis of arbitrarily shaped thin plates with various boundary conditions and under generic transverse loading conditions. Framed into Line Element-less Method, a truly meshfree method, this novel approach yields the solution in terms of the deflection function in a straightforward manner, without resorting to any discretization, neither in the domain nor on the boundary. Specifically, expressing the deflection function through a series expansion in terms of harmonic polynomials, it is shown that the proposed method requires only the evaluation of line integrals along the boundary parametric equation. Further, minimization of appropri…
Deep-learning based reconstruction of the shower maximum X max using the water-Cherenkov detectors of the Pierre Auger Observatory
The atmospheric depth of the air shower maximum $X_{\mathrm{max}}$ is an observable commonly used for the determination of the nuclear mass composition of ultra-high energy cosmic rays. Direct measurements of $X_{\mathrm{max}}$ are performed using observations of the longitudinal shower development with fluorescence telescopes. At the same time, several methods have been proposed for an indirect estimation of $X_{\mathrm{max}}$ from the characteristics of the shower particles registered with surface detector arrays. In this paper, we present a deep neural network (DNN) for the estimation of $X_{\mathrm{max}}$. The reconstruction relies on the signals induced by shower particles in the groun…
Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger Observatory
We report a multi-resolution search for anisotropies in the arrival directions of cosmic rays detected at the Pierre Auger Observatory with local zenith angles up to $80^\circ$ and energies in excess of 4 EeV ($4 \times 10^{18}$ eV). This search is conducted by measuring the angular power spectrum and performing a needlet wavelet analysis in two independent energy ranges. Both analyses are complementary since the angular power spectrum achieves a better performance in identifying large-scale patterns while the needlet wavelet analysis, considering the parameters used in this work, presents a higher efficiency in detecting smaller-scale anisotropies, potentially providing directional informa…
Analysis of block random rocking on nonlinear flexible foundation
Abstract In this paper the rocking response of a rigid block randomly excited at its foundation is examined. A nonlinear flexible foundation model is considered accounting for the possibility of uplifting in the case of strong excitation. Specifically, based on an appropriate nonlinear impact force model, the foundation is treated as a bed of continuously distributed springs in parallel with nonlinear dampers. The statistics of the rocking response is examined by an analytical procedure which involves a combination of static condensation and stochastic linearization methods. In this manner, repeated numerical integration of the highly nonlinear differential equations of motion is circumvent…
Steady-state dynamic response of various hysteretic systems endowed with fractional derivative elements
In this paper, the steady-state dynamic response of hysteretic oscillators comprising fractional derivative elements and subjected to harmonic excitation is examined. Notably, this problem may arise in several circumstances, as for instance, when structures which inherently exhibit hysteretic behavior are supplemented with dampers or isolators often modeled by employing fractional terms. The amplitude of the steady-state response is determined analytically by using an equivalent linearization approach. The procedure yields an equivalent linear system with stiffness and damping coefficients which are related to the amplitude of the response, but also, to the order of the fractional derivativ…
Performance and optimal design of Tuned Mass Damper Inerter for base isolated systems
In this paper, the use of a Tuned Mass Damper Inerter to mitigate the seismic response of a base-isolated structure is studied and compared to other passive control devices. The control performance of four different types of hybrid passive control strategies aiming to reduce base displacements of isolated buildings is investigated. Specifically, the Tuned Mass Damper (TMD), the Tuned Liquid Column Damper (TLCD), and finally, the Tuned Mass Damper Inerter, each one associated to a Base Isolated structure (BI system) have been considered. This study has been carried out using as optimal design parameters of the TMDI those estimated by a proposed direct optimization procedure, considering a wh…
Direct evaluation of the equivalent linear damping for TLCD systems in random vibration for pre-design purposes
Abstract Passive control of structural vibrations has received in recent years a great attention from researchers concerned with vibration control. Several types of devices have been proposed in order to reduce the dynamic responses of different kinds of structural systems. Among them, the Tuned Liquid Column Damper (TLCD) proved to be very effective in reducing vibration of structures. Since the increasing use of TLCDs in practical realizations, this paper aims at developing an approximate formulation, by means of a statistical linearization technique, able to estimate the parameters of a structure equipped with a TLCD subjected to random loads for pre-design purposes. Moreover, it is show…
Design, upgrade and characterization of the silicon photomultiplier front-end for the AMIGA detector at the Pierre Auger Observatory
The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargue. We are very grateful to the following agencies and organizations for financial support: Argentina -Comision Nacional de Energia Atomica; Agencia Nacional de Promocion Cientifica y Tecnologica (ANPCyT); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET); Gobierno de la Provincia de Mendoza; Municipalidad de Malargue; NDM Holdings and Valle Las Lenas; in gratitude for their continuing cooperation over land access; Australia -the Australian Research Council; Braz…
Vibration-based identification of mechanical properties of orthotropic arbitrarily shaped plates: Numerical and experimental assessment
Abstract An innovative procedure is introduced for the identification of the mechanical parameters of orthotropic plates of arbitrary shape, under various boundary conditions, based on vibration data. The method employs a combination of a convenient Rayleigh-Ritz approach and Particle-Swarm Optimization to estimate elastic constants of the orthotropic material in a straightforward manner, without requiring computationally demanding iterative Finite Element analyses. Specifically, the pb-2 Rayleigh-Ritz procedure is extended and applied to deal with orthotropic plates, simplifying the approach to more easily treat generic plate shapes, taking advantage of the Green's theorem. The method is t…
Numerical validation of an approximate formulation for the design of TLCD
Probing the origin of ultra-high-energy cosmic rays with neutrinos in the EeV energy range using the Pierre Auger Observatory
Neutrinos with energies above 1017 eV are detectable with the Surface Detector Array of the Pierre Auger Observatory. The identification is efficiently performed for neutrinos of all flavors interacting in the atmosphere at large zenith angles, as well as for Earth-skimming τ neutrinos with nearly tangential trajectories relative to the Earth. No neutrino candidates were found in ∼ 14.7 years of data taken up to 31 August 2018. This leads to restrictive upper bounds on their flux. The 90% C.L. single-flavor limit to the diffuse flux of ultra-high-energy neutrinos with an Eν -2 spectrum in the energy range 1.0 × 1017 eV -2.5 × 1019 eV is E2 dNν/dEν < 4.4 × 10-9 GeV cm-2 s-1 sr-1, placing str…
Testing Hadronic Interactions at Ultrahigh Energies with Air Showers Measured by the Pierre Auger Observatory
Ultrahigh energy cosmic ray air showers probe particle physics at energies beyond the reach of accelerators. Here we introduce a new method to test hadronic interaction models without relying on the absolute energy calibration, and apply it to events with primary energy 6-16 EeV (ECM=110-170 TeV), whose longitudinal development and lateral distribution were simultaneously measured by the Pierre Auger Observatory. The average hadronic shower is 1.33±0.16 (1.61±0.21) times larger than predicted using the leading LHC-tuned models EPOS-LHC (QGSJetII-04), with a corresponding excess of muons.
Limits on point-like sources of ultra-high-energy neutrinos with the Pierre Auger Observatory
With the Surface Detector array (SD) of the Pierre Auger Observatory we can detect neutrinos with energy between 1017 eV and 1020 eV from point-like sources across the sky, from close to the Southern Celestial Pole up to 60 in declination, with peak sensitivities at declinations around ∼-53 and ∼+55, and an unmatched sensitivity for arrival directions in the Northern hemisphere. A search has been performed for highly-inclined air showers induced by neutrinos of all flavours with no candidate events found in data taken between 1 Jan 2004 and 31 Aug 2018. Upper limits on the neutrino flux from point-like steady sources have been derived as a function of source declination. An unrivaled sensit…
Innovative modeling of Tuned Liquid Column Damper motion
Abstract In this paper a new model for the liquid motion within a Tuned Liquid Column Damper (TLCD) device is developed, based on the mathematical tool of fractional calculus. Although the increasing use of these devices for structural vibration control, it is shown that existing model does not always lead to accurate prediction of the liquid motion. A better model is then needed for accurate simulation of the behavior of TLCD systems. As regards, it has been demonstrated how correctly including the first linear liquid sloshing mode, through the equivalent mechanical analogy well established in literature, produces numerical results that highly match the corresponding experimental ones. Sin…
Direct evaluation of jumps for nonlinear systems under external and multiplicative impulses
In this paper the problem of the response evaluation of nonlinear systems under multiplicative impulsive input is treated. Such systems exhibit a jump at each impulse occurrence, whose value cannot be predicted through the classical differential calculus. In this context here the correct jump evaluation of nonlinear systems is obtained in closed form for two general classes of nonlinear multiplicative functions. Analysis has been performed to show the different typical behaviors of the response, which in some cases could diverge or converge to zero instantaneously, depending on the amplitude of the Dirac's delta.
Simplified analytical solution for the optimal design of Tuned Mass Damper Inerter for base isolated structures
Abstract In this paper the use of the Tuned Mass Damper Inerter (TMDI) to control the response of base isolated structures under stochastic horizontal base acceleration is examined. Notably, the TMDI, recently introduced as a generalization of the classical Tuned Mass Damper, allows to achieve enhanced performance compared to the other passive vibration control devices. Thus, it represents an ideal alternative for reducing displacements of base isolated structures. To this aim, firstly a straightforward numerical approach is developed for the optimal design of this device considering a white noise base excitation. Further, a simplified analytical solution for the optimal design of TMDI para…
Probing the radio emission from air showers with polarization measurements
The emission of radio waves from air showers has been attributed to the so-called geomagnetic emission process. At frequencies around 50 MHz this process leads to coherent radiation which can be observed with rather simple setups. The direction of the electric field induced by this emission process depends only on the local magnetic field vector and on the incoming direction of the air shower. We report on measurements of the electric field vector where, in addition to this geomagnetic component, another component has been observed which cannot be described by the geomagnetic emission process. The data provide strong evidence that the other electric field component is polarized radially wit…
Path integral solution for nonlinear systems under parametric Poissonian white noise input
Abstract In this paper the problem of the response evaluation in terms of probability density function of nonlinear systems under parametric Poisson white noise is addressed. Specifically, extension of the Path Integral method to this kind of systems is introduced. Such systems exhibit a jump at each impulse occurrence, whose value is obtained in closed form considering two general classes of nonlinear multiplicative functions. Relying on the obtained closed form relation liking the impulses amplitude distribution and the corresponding jump response of the system, the Path Integral method is extended to deal with systems driven by parametric Poissonian white noise. Several numerical applica…
The FRAM robotic telescope for atmospheric monitoring at the Pierre Auger Observatory
FRAM (F/Photometric Robotic Atmospheric Monitor) is a robotic telescope operated at the Pierre Auger Observatory in Argentina for the purposes of atmospheric monitoring using stellar photometry. As a passive system which does not produce any light that could interfere with the observations of the fluorescence telescopes of the observatory, it complements the active monitoring systems that use lasers. We discuss the applications of stellar photometry for atmospheric monitoring at optical observatories in general and the particular modes of operation employed by the Auger FRAM. We describe in detail the technical aspects of FRAM, the hardware and software requirements for a successful operati…
Approximate survival probability determination of hysteretic systems with fractional derivative elements
Abstract A Galerkin scheme-based approach is developed for determining the survival probability and first-passage probability of a randomly excited hysteretic systems endowed with fractional derivative elements. Specifically, by employing a combination of statistical linearization and of stochastic averaging, the amplitude of the system response is modeled as one-dimensional Markovian Process. In this manner the corresponding backward Kolmogorov equation which governs the evolution of the survival probability of the system is determined. An approximate solution of this equation is sought by employing a Galerkin scheme in which a convenient set of confluent hypergeometric functions is used a…
Probabilistic characterization of nonlinear systems under Poisson white noise via complex fractional moments
In this paper, the probabilistic characterization of a nonlinear system enforced by Poissonian white noise in terms of complex fractional moments (CFMs) is presented. The main advantage in using such quantities, instead of the integer moments, relies on the fact that, through the CFMs the probability density function (PDF) is restituted in the whole domain. In fact, the inverse Mellin transform returns the PDF by performing integration along the imaginary axis of the Mellin transform, while the real part remains fixed. This ensures that the PDF is restituted in the whole range with exception of the value in zero, in which singularities appear. It is shown that using Mellin transform theorem…
A Targeted Search for Point Sources of EeV Neutrons
A flux of neutrons from an astrophysical source in the Galaxy can be detected in the Pierre Auger Observatory as an excess of cosmic-ray air showers arriving from the direction of the source. To avoid the statistical penalty for making many trials, classes of objects are tested in combinations as nine “target sets”, in addition to the search for a neutron flux from the Galactic Center or from the Galactic Plane. Within a target set, each candidate source is weighted in proportion to its electromagnetic flux, its exposure to the Auger Observatory, and its flux attenuation factor due to neutron decay. These searches do not find evidence for a neutron flux from any class of candidate sources. …
Stochastic response of beams equipped with tuned mass dampers subjected to Poissonian loads
This contribution deals with the vibrational response of Euler-Bernoulli beams equipped with tuned mass dampers, subjected to random moving loads. The theory of generalised functions is used to capture the discontinuities of the response variables at the positions of the tuned mass dampers, which involves deriving exact complex eigenvalues and eigenfunctions from a characteristic equation built as the determinant of a 4 x 4 matrix, regardless of the number of tuned mass dampers. Building pertinent orthogonality conditions for the deflection eigenfunctions, the stochastic responses, under Poissonian white noise, are evaluated. In a numerical application, a beam with multiple tuned mass dampe…
Calibration of the underground muon detector of the Pierre Auger Observatory
To obtain direct measurements of the muon content of extensive air showers with energy above $10^{16.5}$ eV, the Pierre Auger Observatory is currently being equipped with an underground muon detector (UMD), consisting of 219 10 $\mathrm{m^2}$-modules, each segmented into 64 scintillators coupled to silicon photomultipliers (SiPMs). Direct access to the shower muon content allows for the study of both of the composition of primary cosmic rays and of high-energy hadronic interactions in the forward direction. As the muon density can vary between tens of muons per m$^2$ close to the intersection of the shower axis with the ground to much less than one per m$^2$ when far away, the necessary bro…
Reconstruction of events recorded with the surface detector of the Pierre Auger Observatory
Cosmic rays arriving at Earth collide with the upper parts of the atmosphere, thereby inducing extensive air showers. When secondary particles from the cascade arrive at the ground, they are measured by surface detector arrays. We describe the methods applied to the measurements of the surface detector of the Pierre Auger Observatory to reconstruct events with zenith angles less than 60 using the timing and signal information recorded using the water-Cherenkov detector stations. In addition, we assess the accuracy of these methods in reconstructing the arrival directions of the primary cosmic ray particles and the sizes of the induced showers.
A Wiener Path Integral Technique for Non-Stationary Response Determination of Nonlinear Oscillators with Fractional Derivative Elements
In this paper a novel approximate analytical technique for determining the non-stationary response probability density function (PDF) of randomly excited linear and nonlinear oscillators with fractional derivative elements is developed. Specifically, the concept of the Wiener path integral in conjunction with a variational formulation is utilized to derive an approximate closed form solution for the system response non-stationary PDF. Notably, the determination of the non-stationary response PDF is accomplished without the need to advance the solution in short time steps as it is required by the existing alternative numerical path integral solution schemes. In this manner, the analytical Wi…
Exact and approximate analytical solutions for nonlocal nanoplates of arbitrary shapes in bending using the line element-less method
AbstractIn this study, an innovative procedure is presented for the analysis of the static behavior of plates at the micro and nano scale, with arbitrary shape and various boundary conditions. In this regard, the well-known Eringen’s nonlocal elasticity theory is used to appropriately model small length scale effects. The proposed mesh-free procedure, namely the Line Element-Less Method (LEM), only requires the evaluation of simple line integrals along the plate boundary parametric equation. Further, variations of appropriately introduced functionals eventually lead to a linear system of algebraic equations in terms of the expansion coefficients of the deflection function. Notably, the prop…
Cosmic-Ray Anisotropies in Right Ascension Measured by the Pierre Auger Observatory
We present measurements of the large-scale cosmic-ray anisotropies in right ascension, using data collected by the surface detector array of the Pierre Auger Observatory over more than 14 years. We determine the equatorial dipole component, ~d⊥, through a Fourier analysis in right ascension that includes weights for each event so as to account for the main detector-induced systematic effects. For the energies at which the trigger efficiency of the array is small, the “East-West” method is employed. Besides using the data from the array with detectors separated by 1500 m, we also include data from the smaller but denser sub-array of detectors with 750 m separation, which allows us to extend …
Search for ultrarelativistic magnetic monopoles with the Pierre Auger Observatory
We present a search for ultra-relativistic magnetic monopoles with the Pierre Auger Observatory. Such particles, possibly a relic of phase transitions in the early universe, would deposit a large amount of energy along their path through the atmosphere, comparable to that of ultrahigh-energy cosmic rays (UHECRs). The air shower profile of a magnetic monopole can be effectively distinguished by the fluorescence detector from that of standard UHECRs. No candidate was found in the data collected between 2004 and 2012, with an expected background of less than 0.1 event from UHECRs. The corresponding 90% confidence level (C.L.) upper limits on the flux of ultra-relativistic magnetic monopoles ra…
Search for photons with energies above 1018 eV using the hybrid detector of the Pierre Auger Observatory
A search for ultra-high energy photons with energies above 1 EeV is performed using nine years of data collected by the Pierre Auger Observatory in hybrid operation mode. An unprecedented separation power between photon and hadron primaries is achieved by combining measurements of the longitudinal air-shower development with the particle content at ground measured by the fluorescence and surface detectors, respectively. Only three photon candidates at energies 1-2 EeV are found, which is compatible with the expected hadron-induced background. Upper limits on the integral flux of ultra-high energy photons of 0.027, 0.009, 0.008, 0.008 and 0.007 km-2 sr-1 yr-1 are derived at 95% C.L. for ener…
Measurement of the Fluctuations in the Number of Muons in Extensive Air Showers with the Pierre Auger Observatory
The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargue. We are very grateful to the following agencies and organizations for financial support: Argentina-Comision Nacional de Energia Atomica, Agencia Nacional de Promocion Cientifica y Tecnologica (ANPCyT), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Gobierno de la Provincia de Mendoza, Municipalidad de Malargue, NDM Holdings and Valle Las Lenas; in gratitude for their continuing cooperation over land access; Australia-the Australian Research Council; Brazil…
Muons in air showers at the Pierre Auger Observatory
We present the first hybrid measurement of the average muon number in air showers at ultrahigh energies, initiated by cosmic rays with zenith angles between 62° and 80°. The measurement is based on 174 hybrid events recorded simultaneously with the surface detector array and the fluorescence detector of the Pierre Auger Observatory. The muon number for each shower is derived by scaling a simulated reference profile of the lateral muon density distribution at the ground until it fits the data. A 1019eV shower with a zenith angle of 67°, which arrives at the surface detector array at an altitude of 1450 m above sea level, contains on average (2.68±0.04±0.48(sys))×107 muons with energies large…
Search for patterns by combining cosmic-ray energy and arrival directions at the Pierre Auger Observatory
Energy-dependent patterns in the arrival directions of cosmic rays are searched for using data of the Pierre Auger Observatory. We investigate local regions around the highest-energy cosmic rays with E ≥ 6×1019 eV by analyzing cosmic rays with energies above E ≥ 5×1018 eV arriving within an angular separation of approximately 15∘. We characterize the energy distributions inside these regions by two independent methods, one searching for angular dependence of energy-energy correlations and one searching for collimation of energy along the local system of principal axes of the energy distribution. No significant patterns are found with this analysis. The comparison of these measurements with …
Generalized differential transform method for nonlinear boundary value problem of fractional order
Abstract In this paper the generalized differential transform method is applied to obtain an approximate solution of linear and nonlinear differential equation of fractional order with boundary conditions. Several numerical examples are considered and comparisons with the existing solution techniques are reported. Results show that the method is effective, easier to implement and very accurate when applied for the solution of fractional boundary values problems.
Searches for anisotropies in the arrival directions of the highest energy cosmic rays detected by the Pierre Auger Observatory
We analyze the distribution of arrival directions of ultra-high energy cosmic rays recorded at the Pierre Auger Observatory in 10 years of operation. The data set, about three times larger than that used in earlier studies, includes arrival directions with zenith angles up to $80^\circ$, thus covering from $-90^\circ$ to $+45^\circ$ in declination. After updating the fraction of events correlating with the active galactic nuclei (AGNs) in the V��ron-Cetty and V��ron catalog, we subject the arrival directions of the data with energies in excess of 40 EeV to different tests for anisotropy. We search for localized excess fluxes and for self-clustering of event directions at angular scales up t…
The Control Performance of TLCD and TMD: Experimental Investigation
The energy spectrum of cosmic rays beyond the turn-down around 1017 eV as measured with the surface detector of the Pierre Auger Observatory
The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargüe. We are very grateful to the following agencies and organizations for financial support: Argentina – Comisión Nacional de Energía Atómica; Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Gobierno de la Provincia de Mendoza; Municipalidad de Malargüe; NDM Holdings and Valle Las Leñas; in gratitude for their continuing cooperation over land access; Australia – the Australian Research Council; Be…
Extraction of the Muon Signals Recorded with the Surface Detector of the Pierre Auger Observatory Using Recurrent Neural Networks
The Pierre Auger Observatory, at present the largest cosmic-ray observatory ever built, is instrumented with a ground array of 1600 water-Cherenkov detectors, known as the Surface Detector (SD). The SD samples the secondary particle content (mostly photons, electrons, positrons and muons) of extensive air showers initiated by cosmic rays with energies ranging from $10^{17}~$eV up to more than $10^{20}~$eV. Measuring the independent contribution of the muon component to the total registered signal is crucial to enhance the capability of the Observatory to estimate the mass of the cosmic rays on an event-by-event basis. However, with the current design of the SD, it is difficult to straightfo…
A novel identification procedure from ambient vibration data
AbstractAmbient vibration modal identification, also known as Operational Modal Analysis, aims to identify the modal properties of a structure based on vibration data collected when the structure is under its operating conditions, i.e., no initial excitation or known artificial excitation. This procedure for testing and/or monitoring historic buildings, is particularly attractive for civil engineers concerned with the safety of complex historic structures. However, since the external force is not recorded, the identification methods have to be more sophisticated and based on stochastic mechanics. In this context, this contribution will introduce an innovative ambient identification method b…
Experimental validation of a direct pre-design formula for TLCD
The passive control of vibrations has received in recent years a great deal of attention from researchers. Several types of devices have been proposed in order to reduce the dynamic responses of different kinds of structural systems. Among them, the Tuned Liquid Column Damper (TLCD) has proved to be very effective in reducing vibration of structures. However, since the equations governing the TLCD controlled systems response is nonlinear, the calibration of TLCD parameters is time consuming and not convenient to perform in a pre-design phase. In this context, it has recently been introduced by the authors a formula that allows to choose the optimal parameters of TLCD in a direct and fast wa…
Direct measurement of the muonic content of extensive air showers between 2× 1017 and 2×1018 eV at the Pierre Auger Observatory
The hybrid design of the Pierre Auger Observatory allows for the measurement of the properties of extensive air showers initiated by ultra-high energy cosmic rays with unprecedented precision. By using an array of prototype underground muon detectors, we have performed the first direct measurement, by the Auger Collaboration, of the muon content of air showers between 2 × 10 17 and 2 × 10 18 eV. We have studied the energy evolution of the attenuation-corrected muon density, and compared it to predictions from air shower simulations. The observed densities are found to be larger than those predicted by models. We quantify this discrepancy by combining the measurements from the muon detector …
Muons in air showers at the Pierre Auger Observatory: Measurement of atmospheric production depth
The surface detector array of the Pierre Auger Observatory provides information about the longitudinal development of the muonic component of extensive air showers. Using the timing information from the flash analog-to-digital converter traces of surface detectors far from the shower core, it is possible to reconstruct a muon production depth distribution. We characterize the goodness of this reconstruction for zenith angles around 60° and different energies of the primary particle. From these distributions, we define Xμmax as the depth along the shower axis where the production of muons reaches maximum. We explore the potentiality of Xμmax as a useful observable to infer the mass compositi…
A search for point sources of EeV photons
Measurements of air showersmade using the hybrid technique developed with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for point sources of EeV photons anywhere in the exposed sky. A multivariate analysis reduces the background of hadronic cosmic rays. The search is sensitive to a declination band from −85º to +20º, in an energy range from 1017.3 eV to 1018.5 eV. No photon point source has been detected. An upper limit on the photon flux has been derived for every direction. The mean value of the energy flux limit that results from this, assuming a photon spectral index of −2, is 0.06 eV cm−2 s−1, and no celestial direction exceeds 0.25 eV …
Studies on the response of a water-Cherenkov detector of the Pierre Auger Observatory to atmospheric muons using an RPC hodoscope
Extensive air showers, originating from ultra-high energy cosmic rays, have been successfully measured through the use of arrays of water-Cherenkov detectors (WCDs). Sophisticated analyses exploiting WCD data have made it possible to demonstrate that shower simulations, based on different hadronic-interaction models, cannot reproduce the observed number of muons at the ground. The accurate knowledge of the WCD response to muons is paramount in establishing the exact level of this discrepancy. In this work, we report on a study of the response of a WCD of the Pierre Auger Observatory to atmospheric muons performed with a hodoscope made of resistive plate chambers (RPCs), enabling us to selec…
Origin of atmospheric aerosols at the Pierre Auger Observatory using studies of air mass trajectories in South America
The Pierre Auger Observatory is making significant contributions towards understanding the nature and origin of ultra-high energy cosmic rays. One of its main challenges is the monitoring of the atmosphere, both in terms of its state variables and its optical properties. The aim of this work is to analyze aerosol optical depth $\tau_{\rm a}(z)$ values measured from 2004 to 2012 at the observatory, which is located in a remote and relatively unstudied area of the Pampa Amarilla, Argentina. The aerosol optical depth is in average quite low - annual mean $\tau_{\rm a}(3.5~{\rm km})\sim 0.04$ - and shows a seasonal trend with a winter minimum - $\tau_{\rm a}(3.5~{\rm km})\sim 0.03$ -, and a sum…
Ion Exchange Membrane deformation and its relevance in Reverse ElectroDialysis
Reverse electrodialysis (RED) is an innovative electro-membrane technology for electric energy generation from two salt solutions with different concentration. This different concentration is the driving force to a selective movement of ions from the concentrate channel to the dilute one oriented by Ion Exchange Membranes (IEMs). Typically, RED stack are made by piling alternatively cation exchange membranes and anion exchange membranes with the aid of spacers or profiles built on the membrane surface. Two electrodic compartments are placed at the two ends of the stack, where the ion flux generated is converted into an electric current able to circulate through an external load connected to…
Reconstruction of inclined air showers detected with the Pierre Auger Observatory
We describe the method devised to reconstruct inclined cosmic-ray air showers with zenith angles greater than $60^\circ$ detected with the surface array of the Pierre Auger Observatory. The measured signals at the ground level are fitted to muon density distributions predicted with atmospheric cascade models to obtain the relative shower size as an overall normalization parameter. The method is evaluated using simulated showers to test its performance. The energy of the cosmic rays is calibrated using a sub-sample of events reconstructed with both the fluorescence and surface array techniques. The reconstruction method described here provides the basis of complementary analyses including an…
Deterministic and Random Vibration of Linear Systems with Singular Parameter Matrices and Fractional Derivative Terms
Both time- and frequency-domain solution techniques are developed for determining the response of linear multi-degree-of-freedom systems exhibiting singular parameter matrices and endowed with derivative terms of noninteger orders modeled as rational numbers. This is done based on the Moore-Penrose matrix inverse theory, in conjunction with a state variable formulation and with a complex modal analysis treatment. It is worth noting that, for the class of systems considered herein, this treatment also yields decoupled governing equations, thus facilitating further their numerical solution. Next, a generalization of the standard frequency-domain input-output (excitation-response) relationship…
Nanosecond-level time synchronization of autonomous radio detector stations for extensive air showers
To exploit the full potential of radio measurements of cosmic-ray air showers at MHz frequencies, a detector timing synchronization within 1 ns is needed. Large distributed radio detector arrays such as the Auger Engineering Radio Array (AERA) rely on timing via the Global Positioning System (GPS) for the synchronization of individual detector station clocks. Unfortunately, GPS timing is expected to have an accuracy no better than about 5 ns. In practice, in particular in AERA, the GPS clocks exhibit drifts on the order of tens of ns. We developed a technique to correct for the GPS drifts, and an independent method is used to cross-check that indeed we reach a nanosecond-scale timing accura…
Combining TMD and TLCD: analytical and experimental studies
Abstract In these years several research efforts have been focused on developing efficient and reliable control devices for mitigating the structural response of tall and lightly damped buildings in case of strong dynamic excitations, such as wind and earthquake ones. In this context, Tuned Mass Dampers (TMDs) represent probably the most common control device due to their high control performances. On the other hand, Tuned Liquid Column Dampers (TLCDs) are increasingly becoming more popular because of some of their attractive features, cost-effectiveness among the others, even though they yield slightly less control performance compared to the classical TMDs. Aiming at combining the benefic…