0000000000013899

AUTHOR

Michel Verdaguer

Cooperative Spin‐Crossover Behaviour in Polymeric 1D Fe II Coordination Compounds: [{Fe(tba) 3 }X 2 ]· n H 2 O

A new family of 1D cooperative spin-crossover polymers with general formula [{Fe(tba)3}X2]·nH2O [tba = N-(4H-1,2,4-triazol-4-yl)benzamide; X = CF3SO3–, n = 2 (1), n = 0 (4); BF4–,n = 3 (2), n = 0 (5); 4-CH3C6H4SO3–, n = 3 (3), n = 0 (6)] has been synthesised and characterised using a series of spectroscopic methods, X-ray powder diffraction, magnetic susceptibility measurements and differential scanning calorimetry. The copper analogue of 1, [{Cu(tba)3}(CF3SO3)2]·3H2O (7), has also been synthesised and its crystal structure solved at 293 K. Compound 7 crystallises in the P space group. The bidentate N-(4H-1,2,4-triazol-4-yl)benzamide ligand bridges the copper ions through the 1,2-nitrogen p…

research product

One-Dimensional Iron(II) Compounds Exhibiting Spin Crossover and Liquid Crystalline Properties in the Room Temperature Region

A novel series of 1D Fe(II) metallomesogens have been synthesized using the ligand 5-bis(alkoxy)- N-(4 H-1,2,4-triazol-4-yl)benzamide (C n -tba) and the Fe(X) 2. sH 2O salts. The polymers obey the general formula [Fe(C n -tba) 3](X) 2. sH 2O [X = CF 3SO 3 (-), BF 4 (-); n = 4, 6, 8, 10, 12]. The derivatives with n = 4, 6 exhibit spin transition behavior like in crystalline compounds, whereas those with n = 8, 10, 12 present a spin transition coexisting with the mesomorphic behavior in the room-temperature region. A columnar mesophase has been found for the majority of the metallomesogens, but also a columnar lamellar mesophase was observed for other derivatives. [Fe(C 12-tba) 3](CF 3SO 3) 2…

research product

[Mnii2(bpym)(H2O)8]4+ and [Miv(CN)8]4– (M = Mo and W) as building blocks in designing bpym- and cyanide-bridged bimetallic three-dimensional networks (bpym = 2,2′-bipyrimidine)Electronic supplementary information (ESI) available: χMT vs. T for 2. See http://www.rsc.org/suppdata/nj/b2/b206124b/

One-pot reaction between the dinuclear [MnII2(bpym)(H2O)8]4+ complex and the mononuclear [MIV(CN)8]4− unit (M = Mo and W; bpym = 2,2′-bipyrimidine) in aqueous solution yields the novel heterobimetallic complexes of formula {(μ-bpym)[Mn(H2O)]2-(μ-NC)6M(CN)2} with M = Mo (1) and W (2). 1 and 2 are isostructural three-dimensional compounds where the manganese atoms are bridged by bisbidentate bpym and hexakismonodentate octacyanometalate units. Variable-temperature magnetic susceptibility data of 1 and 2 show the occurrence of a significant antiferromagnetic coupling between the high spin manganese(II) ions through bridging bpym (Jca. −1.1 cm−1, the exchange Hamiltonian being defined as H = −J…

research product

Synthesis and magnetic properties of bis(μ-hydroxo)bis[(2,2 ′-bipyridyl)copper(II)] squarate. Crystal structure of bis(μ-hydroxo)bis[(2,2′-bipyridyl)copper(II)] squarate tetrahydrate

Abstract The compound [Cu2(bipy)2(OH)2](C4O4)·5.5H2O, where bipy and C4O42− correspond to 2,2′-bipyridyl and squarate (dianion of 3,4-dihydroxy-3-cyclo- butene-1,3-dione) respectively, has been synthesized. Its magnetic properties have been investigated in the 2–300 K temperature range. The ground state is a spin-triplet state, with a singlet-triplet separation of 145 cm−1. The EPR powder spectrum confirms the nature of the ground state. Well-formed single crystals of the tetrahydrate, [Cu2(bipy)2(OH)2](C4O4)·4H2O, were grown from aqueous solutions and characterized by X-ray diffraction. The system is triclinic, space group P 1 , with a = 9.022(2), b = 9.040(2), c = 8.409(2) A, α = 103.51(2…

research product

Multiferroics by Rational Design: Implementing Ferroelectricity in Molecule-Based Magnets

Multiferroics (MF) are materials that exhibit simultaneouslyseveral ferroic order parameters. Among the multiferroicmaterials, those combining antiferro- or ferroelectricity (FE)and antiferro-, ferri-, or ferromagnetism (FM) within thesame material are highly desirable: the coexistence of thepolar and magnetic orders paves the way towards four-levelmemories while their interactions through the magnetoelec-tric effect makes it possible to control the magnetization byelectric fields and hence to develop electronically tuneablemagnetic devices, which are an essential feature for spin-tronics.

research product

Alternierende ferro- und antiferromagnetische Austauschwechselwirkungen in einem kettenförmigen CuII-Koordinationspolymer

research product

Synthesis, crystal structure and magnetic properties of two oxalato-bridged dimetallic trinuclear complexes combined with a polar cation

Two isostructural heterometallic trinuclear oxalato-bridged complexes of formula C(4)[MCr(2)(ox)(6)(H(2)O)(2)]·nH(2)O (C(+) = 4-aminopyridinium; ox(2-) = oxalate dianion; M(2+) = Mn(2+), n = 3, 1; M(2+) = Co(2+), n = 3.25, 2) have been synthesized by using direct self-assembly methods combining C(3)[Cr(ox)(3)] and the chloride salts of the corresponding metal ion. The crystal structures of both compounds have been resolved by single-crystal X-ray diffraction. They crystallize in the C2/c space group [a = 11.5113(15) Å, b = 20.250(3) Å, c = 21.810(4) Å, beta = 100.447(10) degrees, V = 5161.6(3) Å(3), and Z = 4 for 1, and a = 11.4334(16) Å, b = 20.243(2) Å, c = 21.805(3) Å, beta = 101.113(9) …

research product

ChemInform Abstract: Synthesis and Magnetic Properties of Bis(μ-hydroxo)bis((2,2′-bipyridyl)copper(II)) Squarate. Crystal Structure of Bis(μ-hydroxo)bis((2,2′-bipyridyl)copper(II)) Squarate Tetrahydrate.

Abstract The compound [Cu2(bipy)2(OH)2](C4O4)·5.5H2O, where bipy and C4O42− correspond to 2,2′-bipyridyl and squarate (dianion of 3,4-dihydroxy-3-cyclo- butene-1,3-dione) respectively, has been synthesized. Its magnetic properties have been investigated in the 2–300 K temperature range. The ground state is a spin-triplet state, with a singlet-triplet separation of 145 cm−1. The EPR powder spectrum confirms the nature of the ground state. Well-formed single crystals of the tetrahydrate, [Cu2(bipy)2(OH)2](C4O4)·4H2O, were grown from aqueous solutions and characterized by X-ray diffraction. The system is triclinic, space group P 1 , with a = 9.022(2), b = 9.040(2), c = 8.409(2) A, α = 103.51(2…

research product

Titelbild: Cyanide-Bridged Iron(III)–Cobalt(II) Double Zigzag Ferromagnetic Chains: Two New Molecular Magnetic Nanowires (Angew. Chem. 13/2003)

research product

High proton conduction in a chiral ferromagnetic metal-organic quartz-like framework.

A complex-as-ligand strategy to get a multifunctional molecular material led to a metal-organic framework with the formula (NH(4))(4)[MnCr(2)(ox)(6)]·4H(2)O. Single-crystal X-ray diffraction revealed that the anionic bimetallic coordination network adopts a chiral three-dimensional quartz-like architecture. It hosts ammonium cations and water molecules in functionalized channels. In addition to ferromagnetic ordering below T(C) = 3.0 K related to the host network, the material exhibits a very high proton conductivity of 1.1 × 10(-3) S cm(-1) at room temperature due to the guest molecules.

research product

Design of single chain magnets through cyanide-bearing six-coordinate complexes

Abstract The design and preparation of stable cyanide-bearing six-coordinate complexes of formula [MIII(L)(CN)x](x + l − m)− (M = trivalent transition metal ion and L = polydentate blocking ligand) are summarized here. Their use as ligands towards either fully hydrated metal ions or coordinatively unsaturated preformed species, to afford a wide variety of low-dimensional metal assemblies whose nuclearity, dimensionality and magnetic properties can be tuned, is also reviewed. Special emphasis is put on the appropriate choice of the end-cap ligand L whose denticity determines the number of coordinated cyanide groups in the mononuclear precursors. Among the different new spin topologies obtain…

research product

Spin Density Distribution in Transition Metal Complexes: Some Thoughts and Hints

Abstract The spin density distribution in transition metal complexes is discussed in qualitative terms, taking into account the coexistence of spin delocalization and spin polarization mechanisms, with the help of numerical results for several complexes obtained from density functional calculations. The covalent character of the metal-ligand bonds as well as the σ- or π-characteristics of the partially filled d orbitals must be taken into account to qualitatively predict the sign of the spin density at a particular atom within a ligand. The same patterns can be applied to binuclear complexes and can be helpful in determining the ferro- or antiferromagnetic character of the exchange coupling…

research product

Ferromagnetic Coupling between Low- and High-Spin Iron(III) Ions in the Tetranuclear Complex fac-{[FeIII{HB(pz)3}(CN)2(μ-CN)]3FeIII(H2O)3}· 6H2O ([HB(pz)3]- = Hydrotris(1-pyrazolyl)borate)

The novel mononuclear PPh4-fac-[FeIII{HB(pz)3}(CN)3]·H2O (1) [PPh4+= tetraphenylphosphonium cation; (HB(pz)3)- = hydrotris(1-pyrazolyl)borate] and tetranuclear fac-{[FeIII{HB(pz)3}(CN)2(μ-CN)]3FeIII(H2O)3}·6H2O (2) have been prepared and characterized by X-ray diffraction analysis. Crystal data for compound 1:  monoclinic, space group P21/c, a = 9.575(3) A, b = 21.984(4) A, c = 16.863(3) A, β = 100.34(2)°, U = 3486(1) A3, Z = 4. Crystal data for compound 2:  orthorhombic, space group Pnam, a = 14.084(3) A, b = 14.799(4) A, c = 25.725(5) A, U = 5362(2) A3, Z = 4. Compound 1 is a low-spin iron(III) compound with three cyanide ligands in fac arrangement and a tridentate pyrazolylborate ligand …

research product

Exchange Coupling in Cyano-Bridged Homodinuclear Cu(II) and Ni(II) Complexes:  Synthesis, Structure, Magnetism, and Density Functional Theoretical Study

The synthesis and structural characterization of several new cyano-bridged copper(II) and nickel(II) homodinuclear complexes is presented. The measure of magnetic properties for these complexes is complemented with a computational study of the exchange coupling for several model structures representing this family of compounds. The influence of several factors on the coupling constant has been examined, coordination position occupied by the bridging ligand, distortions of the coordination environment, and relative disposition of the cyanide ion with respect to the M-M vector. Comparison of experimental and calculated coupling constants allows for the rationalization of the most relevant fea…

research product

Thermal- and light-induced spin crossover in novel 2D Fe(II) metalorganic frameworks {Fe(4-PhPy)(2)[M(II)(CN)(x)](y)}.sH(2)O: spectroscopic, structural, and magnetic studies.

Five novel two-dimensional coordination polymers {Fe(4PhPy)(2)[M(II)(CN)(4)]}.sH(2)O (4PhyPy = 4-phenylpyridine; 1: M(II) = Pd, s = 0; 2: M(II) = Ni, s = 0; 3: M(II) = Pt, s = 1) and {Fe(4PhPy)(2)[M(I)(CN)(2)](2)}.sH(2)O (4: M(I) = Ag, s = 1; 5: M(I) = Au, s = 0.5) exhibiting spin-crossover properties have been synthesized. They were characterized at various temperatures using X-ray absorption spectroscopy (XAS), powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), and magnetic susceptibility measurements. The occurrence of a cooperative thermal spin transition detected by the magnetic method is located at critical temperatures T(c)( downward arrow)/T(c)( upward arrow) …

research product

Spin-Crossover and Liquid Crystal Properties in 2D Cyanide-Bridged FeII−MI/II Metalorganic Frameworks

Novel two-dimensional heterometallic Fe(II)-M(Ni(II), Pd(II), Pt(II), Ag(I), and Au(I)) cyanide-bridged metalorganic frameworks exhibiting spin-crossover and liquid crystal properties, formulated as {FeL(2)[M(I/II)(CN)(x)](y)}·sH(2)O, where L are the ligands 4-(4-alkoxyphenyl)pyridine, 4-(3,4-dialkoxyphenyl)pyridine, and 4-(3,4,5-trisalkoxyphenyl)pyridine, have been synthesized and characterized. The physical characterization has been carried out by means of EXAFS, X-ray powder diffraction, magnetic susceptibility, differential scanning measurements, and Mössbauer spectroscopy. The 2D Fe(II) metallomesogens undergo incomplete and continuous thermally induced spin transition at T(1/2) ≈ 170 …

research product

Solvent-Dependent Self-Assembly of an Oxalato-Based Three-Dimensional Magnet Exhibiting a Novel Architecture.

The old but evergreen family of bimetallic oxalates still offers innovative and interesting results. When (Me4N)3[Cr(ox)3]·3H2O is reacted with Mn(II) ions in a nonaqueous solvent, a novel three-dimensional magnet of the formula [N(CH3)4]6[Mn3Cr4(ox)12]·6CH3OH is obtained instead of the one-dimensional compound obtained in water. This new material exhibits an unprecedented stoichiometry with a binodal (3,4) net topology and the highest critical temperature (TC = 7 K) observed so far in a manganese-chromium oxalate based magnet.

research product

Cyanide-bridged iron(III)-cobalt(II) double zigzag ferromagnetic chains: two new molecular magnetic nanowires.

and opened the perspective of a potential useof 1D magnetic molecular nanowires for information storage.Even though 1D magnetism is a very active area of research,such dynamic behavior was never detected before since it isnot clear how to fulfill experimentally the requirements of aperfect 1D Ising-type chain. This finding prompted us to lookcarefully at 1D systems containing anisotropic elements,suchas cobalt(ii) and low-spin iron(iii) centers that we synthesizedrecently,

research product

Postsynthetic Approach for the Rational Design of Chiral Ferroelectric Metal–Organic Frameworks

International audience; Ferroelectrics (FEs) are materials of paramount importance with a wide diversity of applications. Herein, we propose a postsynthetic methodology for the smart implementation of ferroelectricity in chiral metal−organic frameworks (MOFs): following a single-crystal to single-crystal cation metathesis, the Ca2+ counterions of a preformed chiral MOF of formula Ca6II{CuII24[(S,S)-hismox]12(OH2)3}·212H2O (1), where hismox is a chiral ligand derived from the natural amino acid l-histidine, are replaced by CH3NH3+. The resulting compound, (CH3NH3)12{CuII24[(S,S)-hismox]12(OH2)3}·178H2O (2), retains the polar space group of 1 and is ferroelectric below 260 K. These results op…

research product

A novel oxalate-based three-dimensional coordination polymer showing magnetic ordering and high proton conductivity

A novel three-dimensional (3D) coordination polymer with the formula (C3N2H5)4[MnCr2(ox)6]·5H2O (2), where ox = oxalate and C3N2H5 = imidazolium cation, is reported. Single crystal X-ray diffraction reveals that this porous coordination polymer adopts a chiral three-dimensional quartz-like architecture, with the guest imidazolium cations and water molecules being hosted in its pores. This novel multifunctional material exhibits both a ferromagnetic ordering at TC = 3.0 K, related to the host MnCr2 network, and high proton conductivity [1.86 × 10−3 S cm−1 at 295 K and 88% relative humidity (RH)] due to the presence of the acidic imidazolium cations and free water molecules. The similarity of…

research product

Dinuclear copper(II) complexes as testing ground for molecular magnetism theory

Abstract A leitmotiv in the field of molecular magnetism is the study of the electron exchange (EE) magnetic interactions among distant metal centers through the corresponding bridging ligands in polynuclear coordination compounds. The present review provides a historical perspective on the use of dinuclear copper(II) complexes with either simple inorganic or extended organic bridging ligands as experimental and theoretical models for the fundamental research on the relative importance of the spin delocalization and spin polarization mechanisms of the EE interaction across σ- and π-type orbital pathways. Particular focus is placed on the work by Professor Miguel Julve, outstanding researche…

research product

Pressure-induced electron transfer in ferrimagnetic Prussian blue analogs

M\"ossbauer and magnetic susceptibility measurements were performed under pressure on three Prussian blue analogs, ${\mathrm{K}}_{0.1}{\mathrm{Co}}_{4}[{\mathrm{Fe}(\mathrm{CN})}_{6}{]}_{2.7}\ensuremath{\cdot}18{\mathrm{H}}_{2}\mathrm{O},$ ${\mathrm{K}}_{0.28}{\mathrm{Co}}_{4}[{\mathrm{Fe}(\mathrm{CN})}_{6}{]}_{2.76}\ensuremath{\cdot}18{\mathrm{H}}_{2}\mathrm{O},$ and ${\mathrm{Cs}}_{0.7}{\mathrm{Co}}_{4}[{\mathrm{Fe}(\mathrm{CN})}_{6}{]}_{2.9}\ensuremath{\cdot}16{\mathrm{H}}_{2}\mathrm{O}.$ A pressure-induced electron transfer ${\mathrm{Co}}^{2+}(S=\frac{3}{2})\ensuremath{-}{\mathrm{Fe}}^{3+}(S=\frac{1}{2})\ensuremath{\rightarrow}{\mathrm{Co}}^{3+}(S=0)\ensuremath{-}{\mathrm{Fe}}^{2+}(S=0)…

research product

Topological Versatility of Oxalate-Based Bimetallic One-Dimensional (1D) Compounds Associated with Ammonium Cations

A new family of oxalate-bridged chains of formula (C(1))[Mn(H(2)O)(3)Cr(ox)(3)]·H(2)O (1), (C(2))(4)[Mn(2)(H(2)O)(3)ClCr(2)(ox)(6)]Cl·H(2)O·2C(2)H(6)O (2a), (C(2))(4)[Co(2)(H(2)O)(3)ClCr(2)(ox)(6)]Cl·2H(2)O·2C(2)H(6)O (2b), [Mn(C(3))(H(2)O)(2)Cr(ox)(3)]·H(2)O (3), and (C(4))(4)[Mn(H(2)O){Cr(ox)(3)}(2)]·H(2)O (4) [C(1)(+) = tetramethylammonium, C(2)(+) = 4-N,N-dimethylaminopyridinium, C(3)(+) = 1-hydroxyethyl-4-N,N-dimethylamino-pyridinium, C(4)(+) = 1-hydroxyethyl-4-(4'-dimethylamino-α-styryl)-pyridinium, ox(2-) = oxalate] have been synthesized by self-assembly of the (C(n))(3)[Cr(ox)(3)] (n = 1-4) mononuclear compound and the chloride salts of the corresponding metal(II) ions. The crystal …

research product

A tribute to Professor Juan Faus Payá

International audience; Pas de résumé

research product

Cover Picture: Cyanide-Bridged Iron(III)–Cobalt(II) Double Zigzag Ferromagnetic Chains: Two New Molecular Magnetic Nanowires (Angew. Chem. Int. Ed. 13/2003)

research product

Antiferromagnetic Interactions in Copper(II) µ-Oxalato Dinuclear Complexes: The Role of the Counterion

We report the preparation, crystal structure determination, magnetic properties and DFT calculations of five oxalato-bridged dicopper(II) complexes of formula [Cu-2(bpy)(2-)(H2O)(2)(C2O4)](CF3SO3)(2) (1), [Cu-2(bpy)(2)(C2O4)](PF6)(2) (2), [Cu-2(bpy)(2)(C2O4)](ClO4)(2) (3), [Cu-2(bpy)(2)Cl-2(C2O4)]center dot H2O (4) and [Cu-2(bpy)(2)(NO2)(2)(C2O4)] (5) (bpy = 2,2'-bipyridine and C2O42-= oxalate). Compounds 1, 2, 4 and 5 crystallize in the monoclinic system and 3 crystallizes in the triclinic system. The oxalate ligands in 1-5 adopt the bis-bidentate coordination mode and the two bpy molecules act as terminal ligands. The coordination of the counterions and the surroundings of the copper(II) …

research product

ChemInform Abstract: Spin Density Distribution in Transition Metal Complexes: Some Thoughts and Hints

Abstract The spin density distribution in transition metal complexes is discussed in qualitative terms, taking into account the coexistence of spin delocalization and spin polarization mechanisms, with the help of numerical results for several complexes obtained from density functional calculations. The covalent character of the metal-ligand bonds as well as the σ- or π-characteristics of the partially filled d orbitals must be taken into account to qualitatively predict the sign of the spin density at a particular atom within a ligand. The same patterns can be applied to binuclear complexes and can be helpful in determining the ferro- or antiferromagnetic character of the exchange coupling…

research product

Synthesis, Crystal Structures, and Magnetic Properties of a New Family of Heterometallic Cyanide-Bridged FeIII2MII2 (M = Mn, Ni, and Co) Square Complexes

New heterobimetallic tetranuclear complexes of formula [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Mn(II)(bpy)(2)](2)(ClO(4))(2)·CH(3)CN (1), [Fe(III){HB(pz)(3)}(CN)(2)(μ-CN)Ni(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (2a), [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Ni(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (2b), [Fe(III){HB(pz)(3)}(CN)(2)(μ-CN)Co(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (3a), and [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Co(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (3b), [HB(pz)(3)(-) = hydrotris(1-pyrazolyl)borate, B(Pz)(4)(-) = tetrakis(1-pyrazolyl)borate, dmphen = 2,9-dimethyl-1,10-phenanthroline, bpy = 2,2'-bipyridine] have been synthesized and structurally and magnetically characterized. Complexes 1-3b have be…

research product

[Fe(bipy)(CN)4]- as a Versatile Building Block for the Design of Heterometallic Systems:  Synthesis, Crystal Structure, and Magnetic Properties of PPh4[FeIII(bipy)(CN)4]·H2O, [{FeIII(bipy)(CN)4}2MII(H2O)4]·4H2O, and [{FeIII(bipy)(CN)4}2ZnII]·2H2O [bipy = 2,2‘-Bipyridine; M = Mn and Zn]

The new cyano complexes of formulas PPh4[FeIII(bipy)(CN)4]·H2O (1), [{FeIII(bipy)(CN)4}2MII(H2O)4]·4H2O with M = Mn (2) and Zn (3), and [{FeIII(bipy)(CN)4}2ZnII]·2H2O (4) [bipy = 2,2‘-bipyridine and PPh4 = tetraphenylphosphonium cation] have been synthesized and structurally characterized. The structure of complex 1 is made up of mononuclear [Fe(bipy)(CN)4]- anions, tetraphenyphosphonium cations, and water molecules of crystallization. The iron(III) is hexacoordinated with two nitrogen atoms of a chelating bipy and four carbon atoms of four terminal cyanide groups, building a distorted octahedron around the metal atom. The structure of complexes 2 and 3 consists of neutral centrosymmetric […

research product

Alternating Ferro- and Antiferromagnetic Interactions in a Chainlike CuII Coordination Polymer

research product

Three-dimensional bimetallic octacyanidometalates $[M^{IV}{(\mu-CN)_{4}Mn^{II}(H_{2}O)_2}_2 \cdot 4H_{2}O]_{n}$ (M=Nb,Mo,W) : synthesis, single-crystal X-ray diffraction and magnetism

Abstract We report the synthesis, the single-crystal X-ray crystallographic structures and the magnetic properties of three new isostructural cyanido-bridged networks: [M IV {(μ-CN) 4 Mn II (H 2 O) 2 } 2 ·4H 2 O] n [M IV  = Nb IV ( 1 ), Mo IV ( 2 ), W IV ( 3 )]. For compound 1 , the magnetic properties reveal a ferrimagnetic phase below 50 K. In contrast, compounds 2 and 3 show a paramagnetic behaviour with no magnetic ordering down to 2 K. The only electronic difference between the two kinds of compounds is the presence of two paired electrons on Mo IV ( 2 ) and W IV ( 3 ) (d 2 electronic configuration, S  = 0) with no possible exchange interactions with Mn II ions (d 5 electronic configur…

research product

Cyanide-bridged Fe(III)–Co(II) bis double zigzag chains with a slow relaxation of the magnetisation

Reaction of [FeIII(bipy)(CN)4]¯ with fully solvated MII cations [M = Co (1) and Mn (2)] produces the isostructural bis double zigzag chains [[FeIII(bipy)(CN)4]2MII(H2O)]·MeCN·1/2H2O; 1 exhibits intrachain ferromagnetic and interchain antiferromagnetic couplings, slow magnetic relaxation and hysteresis effects. Luminita Marilena, Toma, Luminita.Toma@uv.es ; Lescouezec, Alain Francois Rodri, Alain.Lescouezec@uv.es ; Lloret Pastor, Francisco, Francisco.Lloret@uv.es ; Julve Olcina, Miguel, Miguel.Julve@uv.es

research product

CCDC 1049852: Experimental Crystal Structure Determination

Related Article: Miguel Julve, Alain Gleizes, Lise Marie Chamoreau, Eliseo Ruiz, Michel Verdaguer|2018|Eur.J.Inorg.Chem.||509|doi:10.1002/ejic.201700935

research product

CCDC 1049851: Experimental Crystal Structure Determination

Related Article: Miguel Julve, Alain Gleizes, Lise Marie Chamoreau, Eliseo Ruiz, Michel Verdaguer|2018|Eur.J.Inorg.Chem.||509|doi:10.1002/ejic.201700935

research product

CCDC 1555659: Experimental Crystal Structure Determination

Related Article: Marta Mon, Julia Vallejo, Jorge Pasán, Oscar Fabelo, Cyrille Train, Michel Verdaguer, Shin-ichi Ohkoshi, Hiroko Tokoro, Kosuke Nakagawa, Emilio Pardo|2017|Dalton Trans.|46|15130|doi:10.1039/C7DT03415F

research product

CCDC 1541852: Experimental Crystal Structure Determination

Related Article: Marta Mon, Jesús Ferrando-Soria, Michel Verdaguer, Cyrille Train, Charles Paillard, Brahim Dkhil, Carlo Versace, Rosaria Bruno, Donatella Armentano, Emilio Pardo|2017|J.Am.Chem.Soc.|139|8098|doi:10.1021/jacs.7b03633

research product

CCDC 1049853: Experimental Crystal Structure Determination

Related Article: Miguel Julve, Alain Gleizes, Lise Marie Chamoreau, Eliseo Ruiz, Michel Verdaguer|2018|Eur.J.Inorg.Chem.||509|doi:10.1002/ejic.201700935

research product

CCDC 1049849: Experimental Crystal Structure Determination

Related Article: Miguel Julve, Alain Gleizes, Lise Marie Chamoreau, Eliseo Ruiz, Michel Verdaguer|2018|Eur.J.Inorg.Chem.||509|doi:10.1002/ejic.201700935

research product

CCDC 1049850: Experimental Crystal Structure Determination

Related Article: Miguel Julve, Alain Gleizes, Lise Marie Chamoreau, Eliseo Ruiz, Michel Verdaguer|2018|Eur.J.Inorg.Chem.||509|doi:10.1002/ejic.201700935

research product

CCDC 1541853: Experimental Crystal Structure Determination

Related Article: Marta Mon, Jesús Ferrando-Soria, Michel Verdaguer, Cyrille Train, Charles Paillard, Brahim Dkhil, Carlo Versace, Rosaria Bruno, Donatella Armentano, Emilio Pardo|2017|J.Am.Chem.Soc.|139|8098|doi:10.1021/jacs.7b03633

research product

CCDC 1555658: Experimental Crystal Structure Determination

Related Article: Marta Mon, Julia Vallejo, Jorge Pasán, Oscar Fabelo, Cyrille Train, Michel Verdaguer, Shin-ichi Ohkoshi, Hiroko Tokoro, Kosuke Nakagawa, Emilio Pardo|2017|Dalton Trans.|46|15130|doi:10.1039/C7DT03415F

research product

CCDC 1480930: Experimental Crystal Structure Determination

Related Article: Marta Mon, Thais Grancha, Michel Verdaguer, Cyrille Train, Donatella Armentano and Emilio Pardo|2016|Inorg.Chem.|55|6845|doi:10.1021/acs.inorgchem.6b01256

research product