0000000000014722

AUTHOR

Víctor Selles De Lucas

Supplementary material from Functional assessment of morphological homoplasy in stem-gnathostomes

The Osteostraci and Galeaspida are stem-gnathostomes, occupying a key phylogenetic position for resolving the nature of the jawless ancestor from which jawed vertebrates evolved more than 400 million years ago. Both groups are characterized by the presence of rigid headshields that share a number of common morphological traits, in some cases hindering the resolution of their interrelationships and the exact nature of their affinities with jawed vertebrates. Here, we explore the morphological and functional diversity of osteostracan and galeaspid headshields using an innovative approach that combines geometric morphometrics and computational fluid dynamics, thereby constraining the underlyin…

research product

Functional assessment of morphological homoplasy in stem-gnathostomes

Osteostraci and Galeaspida are stem-gnathostomes, occupying a key phylogenetic position for resolving the nature of the jawless ancestor from which jawed vertebrates evolved more than 400 million years ago. Both groups are characterized by the presence of rigid headshields that share a number of common morphological traits, in some cases hindering the resolution of their interrelationships and the exact nature of their affinities with jawed vertebrates. Here, we explore the morphological and functional diversity of osteostracan and galeaspid headshields using an innovative approach that combines geometric morphometrics and computational fluid dynamics, thereby constraining the underlying fa…

research product

Computational Fluid Dynamics Suggests Ecological Diversification among Stem-Gnathostomes.

Summary The evolutionary assembly of the vertebrate bodyplan has been characterized as a long-term ecological trend toward increasingly active and predatory lifestyles, culminating in jawed vertebrates that dominate modern vertebrate biodiversity [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 ]. This contrast is no more stark than between the earliest jawed vertebrates and their immediate relatives, the extinct jawless, dermal armor-encased osteostracans, which have conventionally been interpreted as benthic mud-grubbers with poor swimming capabilities and low maneuverability [ 9 , 10 , 11 , 12 ]. Using computational fluid dynamics, we show that osteostracan headshield morphology is compatible with a dive…

research product