0000000000014860

AUTHOR

Collin Zimmer

showing 5 related works from this author

Front Cover: Structure‐Activity Relationships of Benzamides and Isoindolines Designed as SARS‐CoV Protease Inhibitors Effective against SARS‐CoV‐2 (2…

2021

PharmacologyFront coverProteaseChemistrymedicine.medical_treatmentSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2)Organic ChemistryDrug DiscoverymedicineMolecular MedicineGeneral Pharmacology Toxicology and PharmaceuticsBiochemistryVirologyChemMedChem
researchProduct

Structure‐Activity Relationships of Benzamides and Isoindolines Designed as SARS‐CoV Protease Inhibitors Effective against SARS‐CoV‐2

2020

Abstract Inhibition of coronavirus (CoV)‐encoded papain‐like cysteine proteases (PLpro) represents an attractive strategy to treat infections by these important human pathogens. Herein we report on structure‐activity relationships (SAR) of the noncovalent active‐site directed inhibitor (R)‐5‐amino‐2‐methyl‐N‐(1‐(naphthalen‐1‐yl)ethyl) benzamide (2 b), which is known to bind into the S3 and S4 pockets of the SARS‐CoV PLpro. Moreover, we report the discovery of isoindolines as a new class of potent PLpro inhibitors. The studies also provide a deeper understanding of the binding modes of this inhibitor class. Importantly, the inhibitors were also confirmed to inhibit SARS‐CoV‐2 replication in …

Computational chemistryProteases2019-20 coronavirus outbreakCoronavirus disease 2019 (COVID-19)medicine.medical_treatmentSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2)virusesStructure-activity relationshipsCysteine Proteinase InhibitorsIsoindolesCrystallography X-RayVirus Replicationmedicine.disease_causeAntiviral Agents01 natural sciencesBiochemistryDrug designStructure-Activity Relationshipchemistry.chemical_compoundCatalytic DomainChlorocebus aethiopsDrug DiscoverymedicineAnimalsddc:610General Pharmacology Toxicology and PharmaceuticsBenzamideVero CellsCoronavirus 3C ProteasesCoronavirusPharmacologyProteaseMolecular StructureFull PaperSARS-CoV-2010405 organic chemistryOrganic ChemistryFull PapersProtease inhibitors0104 chemical sciencesMolecular Docking Simulation010404 medicinal & biomolecular chemistrychemistryBiochemistryBenzamidesddc:540Molecular MedicineProtein BindingCysteine
researchProduct

Warhead Reactivity Limits the Speed of Inhibition of the Cysteine Protease Rhodesain.

2021

Viral and parasitic pathogens rely critically on cysteine proteases for host invasion, replication, and infectivity. Their inhibition by synthetic inhibitors, such as vinyl sulfone compounds, has emerged as a promising treatment strategy. However, the individual reaction steps of protease inhibition are not fully understood. Using the trypanosomal cysteine protease rhodesain as a medically relevant target, we design photoinduced electron transfer (PET) fluorescence probes to detect kinetics of binding of reversible and irreversible vinyl sulfones directly in solution. Intriguingly, the irreversible inhibitor, apart from its unlimited residence time in the enzyme, reacts 5 times faster than …

0301 basic medicineProteasesmedicine.medical_treatmentKineticsCysteine Proteinase InhibitorsLigands01 natural sciencesBiochemistryFluorescence03 medical and health sciencesReaction rate constantmedicineReactivity (chemistry)chemistry.chemical_classificationProtease010405 organic chemistryGeneral MedicineCysteine protease0104 chemical sciencesCysteine EndopeptidasesKinetics030104 developmental biologyEnzymechemistryBiophysicsMolecular MedicineCysteineACS chemical biology
researchProduct

Fluorovinylsulfones and -Sulfonates as Potent Covalent Reversible Inhibitors of the Trypanosomal Cysteine Protease Rhodesain: Structure–Activity Rela…

2021

Rhodesain is a major cysteine protease of Trypanosoma brucei rhodesiense, a pathogen causing Human African Trypanosomiasis, and a validated drug target. Recently, we reported the development of α-halovinylsulfones as a new class of covalent reversible cysteine protease inhibitors. Here, α-fluorovinylsulfones/-sulfonates were optimized for rhodesain based on molecular modeling approaches. 2d, the most potent and selective inhibitor in the series, shows a single-digit nanomolar affinity and high selectivity toward mammalian cathepsins B and L. Enzymatic dilution assays and MS experiments indicate that 2d is a slow-tight binder (Ki = 3 nM). Furthermore, the nonfluorinated 2d-(H) shows favorabl…

MaleBiodistributionVinyl CompoundsMolecular modelTrypanosoma brucei bruceiCysteine Proteinase InhibitorsMiceStructure-Activity RelationshipParasitic Sensitivity TestsIn vivoDrug DiscoveryAnimalsHumansStructure–activity relationshipSulfonesEnzyme Assayschemistry.chemical_classificationMolecular StructureChemistryTrypanosoma brucei rhodesienseTrypanocidal AgentsCysteine proteaseMolecular Docking SimulationCysteine EndopeptidasesKineticsEnzymeBiochemistryCovalent bondMolecular MedicineFemaleSulfonic AcidsHeLa CellsProtein BindingJournal of Medicinal Chemistry
researchProduct

Lead Discovery of SARS-CoV-2 Main Protease Inhibitors through Covalent Docking-Based Virtual Screening

2021

During almost all 2020, coronavirus disease 2019 (COVID-19) pandemic has constituted the major risk for the worldwide health and economy, propelling unprecedented efforts to discover drugs for its prevention and cure. At the end of the year, these efforts have culminated with the approval of vaccines by the American Food and Drug Administration (FDA) and the European Medicines Agency (EMA) giving new hope for the future. On the other hand, clinical data underscore the urgent need for effective drugs to treat COVID-19 patients. In this work, we embarked on a virtual screening campaign against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Mpro chymotrypsin-like cysteine pro…

Coronavirus disease 2019 (COVID-19)General Chemical Engineeringmedicine.medical_treatmentSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2)In silicoComputational biologyLibrary and Information Sciences01 natural sciencesMolecular Docking SimulationAntiviral AgentsArticleDocking (dog)0103 physical sciencesmedicineHumansProtease InhibitorsPandemicsVirtual screeningProtease010304 chemical physicsbusiness.industrySARS-CoV-2COVID-19General Chemistry0104 chemical sciencesComputer Science ApplicationsMolecular Docking Simulation010404 medicinal & biomolecular chemistryTarget proteinbusinessJournal of Chemical Information and Modeling
researchProduct