0000000000014959

AUTHOR

Wolfgang Schärtl

Polyorganosiloxane-microgels as probes for forced Rayleigh scattering

We describe the synthesis of microgel spheres of 10 nm radius which are suitable as probes to study diffusion by forced Rayleigh scattering (FRS), a holographic grating technique. Those particles are obtained by a copolycondensation in microemulsion. The main advantage of organosiloxanes compared to purely organic monomers as styrene or methacrylate is the simple chemical functionalization of the particles. A rich choice of silane monomers which may be copolycondensated with the standard monomer trimethoxymethylsilane are commercially available. One of those, chlorobenzyltrimethoxysilane, is used as a coupling agent to attach the photoreactive dye orthonitrostilbene (ONS) to the microgel sp…

research product

Polyorganosiloxane nanoparticles as optical tracers

Polyorganosiloxane microgels have been synthesized by polycondensation in a microemulsion of trimethoxysilanes. Highly crosslinked rather monodisperse particles of radius about 10 nm are obtained.

research product

Crosslinked Spherical Nanoparticles with Core-Shell Topology

Core–shell microgels are crosslinked nanosized spherical particles with a chemical composition that is different on the surface compared to the core region. By employing a core with special optical properties, e.g., a core labeled either with organic dye molecules or noble metal clusters (see Figure), these particles are perfectly suited as optical tracers in diffusion measurements. Here, the shell may be important for several reasons: (i) as a protective coating to suppress any influence of the labels on particle mobility, (ii) to optically separate individual particles even at high concentrations, and (iii) to compatibilize the particles with e.g., polymeric chains. Recent developments in…

research product

Spherical and rod-like colloids with polymer-brush surfaces

In this paper, we describe a strategy to overcome incompatibility of colloidal particles and polymer coils as well as immiscibility of spherical and rod-shaped nanoparticles. Two new types of model colloids are presented, colloidal nanospheres with hairy surfaces (spherical brushes) and polymacromonomers to represent cylindrical brushes. The spherical brushes are synthesized from polyorganosiloxane-μ-gels of diameter 20 nm by grafting onto anionically prepared polystyrene macromonomers of molecular weight M w=5000 g/mol. On average, each sphere has a surface layer of 200 polymer chains. Compatibility of spherical nanoparticles with polymer coils was probed by turbidity of as-cast films as w…

research product

Dye-Labeled Poly(organosiloxane) Microgels with Core−Shell Architecture

Poly(organosiloxane) microgels are highly cross-linked rather monodisperse spherical particles of radius about 10 nm. Using a functionalized silane comonomer, i.e., (chlorobenzyl)trimethoxysilane, model particles suitable for studies in colloid physics are available:  photoreactive and fluorescent dyes can be covalently bound within the microgels to prepare tracers for diffusion studies using forced Rayleigh scattering (FRS) and fluorescence correlation spectroscopy (FCS). For the application as tracer particles, it is important not to influence the diffusion behavior by the coupled chromophores. Therefore, functionalized precursors with a core−shell architecture are used to minimize labeli…

research product

Nanowear on Polymer Films of Different Architecture

In this paper, we describe atomic force microscope (AFM) friction experiments on different polymers. The aim was to analyze the influence of the physical architecture of the polymer on the degree and mode of wear and on the wear mode. Experiments were carried out with (1) linear polystyrene (PS) and cycloolefinic copolymers of ethylene and norbornene, which are stabilized by entanglements, (2) mechanically stretched PS, (3) polyisoprene-b-polystyrene diblock copolymers, with varying composition, (4) brush polymers consisting of a poly(methyl methacrylate) (PMMA) backbone and PS side chains, (5) PMMA and PS brushes grafted from a silicon wafer, (6) plasma-polymerized PS, and (7) chemically c…

research product

Photocleavable microcapsules built from photoreactive nanospheres.

We show how photo-cross-linking of nanoparticles within the micrometer-sized thin oil shell of water-oil-water emulsion droplets leads to a new species of optically addressable microcontainers. The inner water droplet of these emulsions may contain drugs, dyes, or other water-soluble components, leading to filled containers. The thickness, mechanical stability, and light resistance of the container walls can be controlled in a simple way by the amount and adjustable photoreactivity of the nanoparticles. Importantly, the chemical bonds between the nanoparticles constituting the microcapsule shell can be cleaved photochemically by irradiation with UV light. This optically controlled destructi…

research product

Highly Defined, Colloid‐Like Ionic Clusters in Solution

Many societal challenges at the beginning of the 21st century lead to an apparent and growing need for functional materials and novel ways of materials synthesis and assembly. Rising to the challenge, the utilization of small, self-assembling building blocks for the bottom-up construction of new types of polymers and nanostructures has enjoyed increasing popularity among materials researchers in the recent past. Supramolecular materials like foldamers, surface films, nanoparticles, etc. are created by exploiting noncovalent forces [1] leading to an ordered arrangement of nanoscale building blocks. [2] In the search for new polymers based on noncovalent molecular forces, we are motivated by …

research product

Photoinduced Cluster Formation of Coumarin-Labeled Organosilicon Micronetworks

research product

Synthesis and Spectroscopic Properties of Silica−Dye−Semiconductor Nanocrystal Hybrid Particles

We prepared silica-dye-nanocrystal hybrid particles and studied the energy transfer from semiconductor nanocrystals (= donor) to organic dye molecules (= acceptor). Multishell CdSe/CdS/ZnS semiconductor nanocrystals were adsorbed onto monodisperse Stöber silica particles with an outer silica shell of thickness 2-23 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the energy transfer efficiency, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of nanocrystals with increasing dye amount. Our conclusions were underlined by…

research product

Reversible Cluster Formation of Colloidal Nanospheres by Interparticle Photodimerization

Crosslinked spherical nanoparticles based on trimethoxysilane monomers have been prepared by polycondensation in aqueous emulsion. These particles have been labeled chemically at their surface region with two different types of organic dye molecules (cinnamate, coumarin), which both are well known for their ability to undergo a reversible photodimerization if irradiated with light of a suitable wavelength. Upon irradiation of dilute solutions of these nanoparticles with UV light, the photodimerization of labels belonging to different colloidal nanoparticles caused the formation of large colloidal clusters consisting of chemically bound individual nanospheres. This process has been quantitat…

research product

Dynamics of Copolymer Micelles in a Homopolymer Melt:  Influence of the Matrix Molecular Weight

We have studied the dynamics of styrene−isoprene (SI) block copolymer micelles in a matrix of linear entangled polyisoprene (PI) chains, using forced Rayleigh scattering (FRS) and dynamic mechanica...

research product

Water-soluble, cyclodextrin-functionalized semiconductor nanocrystals: Preparation and pH-dependent aggregation and emission properties

Abstract Using peramino-functionalized β-cyclodextrin molecules for phase.transfer of hydrophobic CdSe multishell nanocrystals into water, we obtained hydrophilic nanoparticles with high quantum yield (up to 50%). At pH > 9, the aqueous solution of these nanocrystals remained stable for several months. The nanoparticles showed a strong influence of the pH of the aqueous solution on the emission of the nanocrystals: the quantum yield varied reversible from ∼10% at pH=6 to ∼50% at pH=14, an effect which according to particle size characterization by dynamic light-scattering and asymmetric flow field-flow fractionation has mainly been attributed to reversible partial aggregation of the hydroph…

research product

Cluster formation and rheology of photoreactive nanoparticle dispersions.

We show how photocrosslinking of small nanoparticles within a very dilute colloidal dispersion leads to the formation of large fractal particle clusters, which have a strong influence on the viscosity of the dispersion although the overall solid content is well below 5 wt %. Furthermore, the solvent plays an important role because of its function as an optical filter, for example, in toluene only photocrosslinking but no photocleavage takes place. Therefore, a diffusion-controlled cluster growth mechanism, leading to clusters with low fractal dimension, is expected; on the other hand, in tetrahydrofuran the photoreaction is partially reversible. Therefore, the cluster growth in this case is…

research product

On The Incompatibility of Dextran and Pullulan in Aqueous Solutions and Its Modeling

Joint aqueous solutions of branched dextran and linear pullulan are investigated with respect to their phase separation. The experiments demonstrate that the polymers are – depending on the molar mass of dextran – incompatible in aqueous solutions despite their chemical similarity. This finding can be modeled on the basis of an approach accounting for chain connectivity and conformational relaxation of the components. According to these calculations, the polymers exhibit a miscibility gap in joint solutions despite the favorable interactions between them. Using information on the subsystems H2O/dextran and H2O/pullulan, the assumption of complete miscibility of the polysaccharides is requir…

research product

Calcium Sulfate Nanoparticles with Unusual Dispersibility in Organic Solvents for Transparent Film Processing

Calcium sulfate is one of the most important construction materials. Today it is employed as high-performance compound in medical applications and cement mixtures. We report a synthesis for calcium sulfate nanoparticles with outstanding dispersibility properties in organic solvents without further functionalization. The nanoparticles (amorphous with small γ-anhydrite crystallites, 5–50 nm particle size) form long-term stable dispersions in acetone without any sign of precipitation. 1H NMR spectroscopic techniques and Fourier-transform infrared spectroscopy (FTIR) reveal absorbed 2-propanol on the particle surfaces that induce the unusual dispersibility. Adding water to the nanoparticle disp…

research product

Influence of Hair Density and Hair Length on Interparticle Interactions of Spherical Polymer Brushes in a Homopolymer Matrix

The dynamics of hairy spherical nanoparticles in a melt of linear polymer chains has been investigated by mechanical spectroscopy as a function of particle topology and concentration. Using a simple free volume approach for the data analysis of the structural relaxation time vs concentration and the well-known hard-sphere result as a reference, a semiquantitative measure for the interparticle interactions, that is particle deformability/softness, and the effective particle size compared to the size of a nonswollen spherical brush has been determined. For these studies, model particles of hairy nanoparticles differing in either hair length or grafting density have been prepared. In contrast …

research product

Synthesis and large scale fractionation of non-linear polymers: brushes and hyperbranched polymers

Polymer brushes with poly(methyl methacrylate) (PMMA) backbone and polystyrene side chains were synthesized by radical polymerization of ω-methacryloyl-polystyrene macromonomers. Hyperbranched PMMA was obtained by means of self-condensing group transfer copolymerization of methyl methacrylate with an initiator-monomer containing a polymerizable methacryloyl moiety and an initiating silylketeneacetal function. Both non-linear products were fractionated using the method of continuous polymer fractionation, consisting in a particular type of continuous countercurrent extraction. The combination of methyl ethyl ketone (solvent) with acetone (AC) (precipitant) turned out to be suitable for the f…

research product

Hierarchical Self-Organization of Perylene Bisimide–Melamine Assemblies to Fluorescent Mesoscopic Superstructures

A series of three perylene tetracarboxylic acid bisimide dyes 3a-c bearing phenoxy substituents at the four bay positions of the perylene core were synthesized and their complexation behavior to complementary ditopic dialkyl melamines 8a-c was investigated. Binding constants and Gibbs binding energies for the hydrogen bonds between the imide and the complementary melamine moiety have been determined in several solvents by NMR and UV/Vis titration experiments with monotopic model compounds 5 and 9. The effects of the solvent polarity and specific solvent-solute interactions on the degree of polymerization of (3 x 8)n are discussed, and a general formula to estimate the chain length of [AA-BB…

research product