0000000000016275

AUTHOR

Carmen García-ruiz

showing 4 related works from this author

Fast enantiomeric separation of uniconazole and diniconazole by electrokinetic chromatography using an anionic cyclodextrin: application to the deter…

2000

The enantiomeric resolution of the fungicides uniconazole and diniconazole was performed using electrokinetic chromatography with cyclodextrins as pseudostationary phase (CD-EKC). A systematic evaluation of several chiral selectors was made. The anionic derivative carboxymethylated-gamma-cyclodextrin (CM-gamma-CD) was found to be the most appropriate for the enantioseparation of fungicides among all cyclodextrins tested. The influence of some experimental conditions such as nature and buffer pH, chiral selector concentration, and temperature on the enantiomeric separation of the compounds studied was also investigated. The use of a 50 mM phosphate buffer (pH 6.5) containing 5 mM CM-gamma-CD…

CienciaAnalyteResolution (mass spectrometry)Electrokinetic chromatographyScienceClinical BiochemistryUniconazoleChemistry analytic and technicalDerivativeBiochemistryAnalytical ChemistryElectrokinetic phenomenaPhase (matter)CIENCIAchemistry.chemical_classificationCyclodextrinsChromatographyCyclodextrinElectrophoresis CapillaryStereoisomerismQuímica analítica e industrialSCIENCETriazolesDiniconazoleFungicides IndustrialUniconazolechemistryIndicators and ReagentsEnantiomer
researchProduct

Enantiomeric separation of chiral phenoxy acid herbicides by electrokinetic chromatography. Application to the determination of analyte-selector appa…

2001

The enantiomeric resolution of chiral phenoxy acid herbicides was performed by electrokinetic chromatography using a cyclodextrin as chiral pseudophase (CD-EKC). A systematic evaluation of several neutral and charged cyclodextrins was made. Among the cyclodextrins tested, (2-hydroxy)propyl beta-cyclodextrin (HP-beta-CD) was found to be the most appropriate for the enantioseparation of phenoxy acids. The influence of some experimental conditions, such as nature and pH of the background electrolyte, chiral selector concentration, and temperature, on the enantiomeric separation of phenoxy acids was also studied. The use of a 50 mM electrolyte solution in ammonium formate at pH 5 and a temperat…

CienciaAnalyteElectrokinetic chromatographyResolution (mass spectrometry)ScienceChemistry analytic and technicalClinical BiochemistryElectrolytePhenoxy acid herbicidesBiochemistryAnalytical ChemistryElectrolyteschemistry.chemical_compoundElectrokinetic phenomenaTwo temperatureCIENCIAAmmonium formateOrganic chemistrychemistry.chemical_classificationChromatographyCyclodextrinsChromatographyCyclodextrinHerbicidesChemistryPhenyl Ethersbeta-CyclodextrinsTemperatureStereoisomerismQuímica analítica e industrialSCIENCEHydrogen-Ion Concentration2-Hydroxypropyl-beta-cyclodextrinSolutionsPropionatesEnantiomerELECTROPHORESIS
researchProduct

GDF11 exhibits tumor suppressive properties in hepatocellular carcinoma cells by restricting clonal expansion and invasion.

2019

Growth differentiation factor 11 (GDF11) has been characterized as a key regulator of differentiation in cells that retain stemness features, despite some controversies in age-related studies. GDF11 has been poorly investigated in cancer, particularly in those with stemness capacity, such as hepatocellular carcinoma (HCC), one of the most aggressive cancers worldwide. Here, we focused on investigating the effects of GDF11 in liver cancer cells. GDF11 treatment significantly reduced proliferation, colony and spheroid formation in HCC cell lines. Consistently, down-regulation of CDK6, cyclin D1, cyclin A, and concomitant upregulation of p27 was observed after 24 h of treatment. Interestingly,…

0301 basic medicine[SDV]Life Sciences [q-bio]Cyclin ACellChick EmbryoChorioallantoic Membrane0302 clinical medicineCell MovementCyclin D1HCCbiologyNeovascularization PathologicCell DifferentiationHep G2 CellsCell cycleCadherinsHuh7 cells3. Good health[SDV] Life Sciences [q-bio]Gene Expression Regulation NeoplasticGrowth Differentiation Factorsmedicine.anatomical_structure030220 oncology & carcinogenesisBone Morphogenetic ProteinsMolecular MedicineLiver cancerCyclin-Dependent Kinase Inhibitor p27Signal Transduction[SDV.CAN]Life Sciences [q-bio]/CancerCyclin ACell cycleHep3B cells03 medical and health sciencesCyclin D1Downregulation and upregulation[SDV.CAN] Life Sciences [q-bio]/CancerAntigens CDCell Line TumorOccludinSpheroids CellularmedicineAnimalsHumansViability assayMolecular BiologyCell Proliferation[SDV.MHEP.HEG]Life Sciences [q-bio]/Human health and pathology/Hépatology and GastroenterologyCyclin-Dependent Kinase 6[SDV.MHEP.HEG] Life Sciences [q-bio]/Human health and pathology/Hépatology and Gastroenterology030104 developmental biologyCell cultureGDF11biology.proteinCancer researchCyclin-dependent kinase 6Snail Family Transcription FactorsBiochimica et biophysica acta. Molecular basis of disease
researchProduct

Erratum

2016

Author(s): Klionsky, DJ; Abdelmohsen, K; Abe, A; Abedin, MJ; Abeliovich, H; Arozena, AA; Adachi, H; Adams, CM; Adams, PD; Adeli, K; Adhihetty, PJ; Adler, SG; Agam, G; Agarwal, R; Aghi, MK; Agnello, M; Agostinis, P; Aguilar, PV; Aguirre-Ghiso, J; Airoldi, EM; Ait-Si-Ali, S; Akematsu, T; Akporiaye, ET; Al-Rubeai, M; Albaiceta, GM; Albanese, C; Albani, D; Albert, ML; Aldudo, J; Algul, H; Alirezaei, M; Alloza, I; Almasan, A; Almonte-Beceril, M; Alnemri, ES; Alonso, C; Altan-Bonnet, N; Altieri, DC; Alvarez, S; Alvarez-Erviti, L; Alves, S; Amadoro, G; Amano, A; Amantini, C; Ambrosio, S; Amelio, I; Amer, AO; Amessou, M; Amon, A; An, Z; Anania, FA; Andersen, SU; Andley, UP; Andreadi, CK; Andrieu-Ab…

0301 basic medicineSettore BIO/06biologyCell Biology[SDV.BC]Life Sciences [q-bio]/Cellular Biologybiology.organism_classificationCell biologyInterpretation (model theory)03 medical and health sciencesArama030104 developmental biologyMolecular BiologyHumanitiesComputingMilieux_MISCELLANEOUS
researchProduct