Gamma rays induced synthesis of graphene oxide/gold nanoparticle composites: structural and photothermal study
Gamma irradiation provides an alternative pathway to conventional gold nanoparticle synthesis because it is simple, fast, and economical. Here, we employed gamma irradiation at low doses (1–20 kGy) to obtain gold nanoparticles (Au NPs) anchored onto graphene oxide (GO) sheets. GO was selected as a suitable platform for the nucleation and growth of Au NPs because of its large surface area and good dispersibility in water due to the presence of polar oxygen-containing functional groups in its structure. Gamma irradiation at all the applied doses led to the reduction of chloroauric acid and the formation of evenly distributed Au NPs at the GO surface, simultaneously causing the reduction of GO…
The effect of annealing temperature and time on synthesis of graphene thin films by rapid thermal annealing
In this paper, we performed synthesis of graphene thin films by rapid thermal annealing (RTA) of thin nickel copper (Ni/Cu) layers deposited on spectroscopic graphite as a carbon source. Furthermore, we investigated the effect of annealing temperature and annealing time on formation and quality of synthesized graphene films. Raman spectroscopy study showed that annealing at lower temperatures results in formation of monolayer graphene films, while annealing at higher temperatures results in formation of multilayer graphene films. We used Raman mapping to determine the distribution of graphene sheets. Surface morphology of graphene thin films was investigated by atomic force microscopy and s…
Gamma irradiation of graphene quantum dots with ethylenediamine: Antioxidant for ion sensing
Due to the low consumption of chemicals, the absence of toxic residual side products, the procedure simplicity and time-saving aspects, gamma irradiation offers advantages over the classical chemical protocols. We successfully employed gamma irradiation in order to introduce N-atoms in Graphene Quantum Dots (GQDs). By irradiating GQDs water dispersions in the presence of isopropyl alcohol and ethylenediamine, at doses of 25, 50 and 200 kGy, we attached amino groups onto GQDs in a single synthetic step. At the same time, a chemical reduction is achieved, too. Selected conditions induced incorporation of N-atoms within GDQs atomic lattice (around 3 at%), at all applied doses. Additionally, th…
Modification of Structural and Luminescence Properties of Graphene Quantum Dots by Gamma Irradiation and Their Application in a Photodynamic Therapy
Herein, the ability of gamma irradiation to enhance the photoluminescence properties of graphene quantum dots (GQDs) was investigated. Different doses of gamma-irradiation were used on GQDs to examine the way in which their structure and optical properties can be affected. The photoluminescence quantum yield was increased six times for the GQDs irradiated with high doses compared to the nonirradiated material. Both photoluminescence lifetime and values of optical band gap were increased with the dose of applied gamma irradiation. In addition, the exploitation of the gamma-irradiated GQDs as photosensitizers was examined by monitoring the production of singlet oxygen under UV illumination. T…
Gamma-Ray-Induced Structural Transformation of GQDs towards the Improvement of Their Optical Properties, Monitoring of Selected Toxic Compounds, and Photo-Induced Effects on Bacterial Strains.
Structural modification of different carbon-based nanomaterials is often necessary to improve their morphology and optical properties, particularly the incorporation of N-atoms in graphene quantum dots (GQDs). Here, a clean, simple, one-step, and eco-friendly method for N-doping of GQDs using gamma irradiation is reported. GQDs were irradiated in the presence of the different ethylenediamine (EDA) amounts (1 g, 5 g, and 10 g) and the highest % of N was detected in the presence of 10 g. N-doped GQDs emitted strong, blue photoluminescence (PL). Photoluminescence quantum yield was increased from 1.45, as obtained for non-irradiated dots, to 7.24% for those irradiated in the presence of 1 g of …