0000000000016491

AUTHOR

Biljana M. Todorović-marković

0000-0002-0704-4327

showing 5 related works from this author

Gamma rays induced synthesis of graphene oxide/gold nanoparticle composites: structural and photothermal study

2022

Gamma irradiation provides an alternative pathway to conventional gold nanoparticle synthesis because it is simple, fast, and economical. Here, we employed gamma irradiation at low doses (1–20 kGy) to obtain gold nanoparticles (Au NPs) anchored onto graphene oxide (GO) sheets. GO was selected as a suitable platform for the nucleation and growth of Au NPs because of its large surface area and good dispersibility in water due to the presence of polar oxygen-containing functional groups in its structure. Gamma irradiation at all the applied doses led to the reduction of chloroauric acid and the formation of evenly distributed Au NPs at the GO surface, simultaneously causing the reduction of GO…

RadiationOne-step synthesisGold nanoparticlesGamma irradiationPhotothermal propertiesSettore CHIM/02 - Chimica FisicaGraphene oxide
researchProduct

The effect of annealing temperature and time on synthesis of graphene thin films by rapid thermal annealing

2015

In this paper, we performed synthesis of graphene thin films by rapid thermal annealing (RTA) of thin nickel copper (Ni/Cu) layers deposited on spectroscopic graphite as a carbon source. Furthermore, we investigated the effect of annealing temperature and annealing time on formation and quality of synthesized graphene films. Raman spectroscopy study showed that annealing at lower temperatures results in formation of monolayer graphene films, while annealing at higher temperatures results in formation of multilayer graphene films. We used Raman mapping to determine the distribution of graphene sheets. Surface morphology of graphene thin films was investigated by atomic force microscopy and s…

Materials scienceThin films.Annealing (metallurgy)Scanning electron microscopeThin filmsvirusesAnalytical chemistry02 engineering and technology010402 general chemistry01 natural scienceslaw.inventionsymbols.namesakelawMaterials ChemistryGraphiteThin filmGraphene; Graphite; Rapid thermal annealing; Thin films.Graphene oxide paperRapid thermal annealingGrapheneMechanical EngineeringMetals and Alloys021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesElectronic Optical and Magnetic MaterialsChemical engineeringMechanics of MaterialssymbolsGraphiteGraphene0210 nano-technologyRaman spectroscopyGraphene nanoribbonsSynthetic Metals
researchProduct

Gamma irradiation of graphene quantum dots with ethylenediamine: Antioxidant for ion sensing

2020

Due to the low consumption of chemicals, the absence of toxic residual side products, the procedure simplicity and time-saving aspects, gamma irradiation offers advantages over the classical chemical protocols. We successfully employed gamma irradiation in order to introduce N-atoms in Graphene Quantum Dots (GQDs). By irradiating GQDs water dispersions in the presence of isopropyl alcohol and ethylenediamine, at doses of 25, 50 and 200 kGy, we attached amino groups onto GQDs in a single synthetic step. At the same time, a chemical reduction is achieved, too. Selected conditions induced incorporation of N-atoms within GDQs atomic lattice (around 3 at%), at all applied doses. Additionally, th…

PhotoluminescenceMaterials scienceEthylenediamine02 engineering and technologyPhotochemistry01 natural scienceslaw.inventionIonMetalchemistry.chemical_compoundlaw0103 physical sciencesMaterials ChemistryZeta potentialSensor010302 applied physicsDetection limitChemical propertiesOptical propertiesGrapheneProcess Chemistry and TechnologyCarbon Chemical properties Optical properties Sensor021001 nanoscience & nanotechnologyCarbonSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialschemistryQuantum dotvisual_artCeramics and Compositesvisual_art.visual_art_medium0210 nano-technologyCeramics International
researchProduct

Modification of Structural and Luminescence Properties of Graphene Quantum Dots by Gamma Irradiation and Their Application in a Photodynamic Therapy

2015

Herein, the ability of gamma irradiation to enhance the photoluminescence properties of graphene quantum dots (GQDs) was investigated. Different doses of gamma-irradiation were used on GQDs to examine the way in which their structure and optical properties can be affected. The photoluminescence quantum yield was increased six times for the GQDs irradiated with high doses compared to the nonirradiated material. Both photoluminescence lifetime and values of optical band gap were increased with the dose of applied gamma irradiation. In addition, the exploitation of the gamma-irradiated GQDs as photosensitizers was examined by monitoring the production of singlet oxygen under UV illumination. T…

PhotoluminescenceMaterials scienceLuminescenceBand gapQuantum yieldgraphene quantum dot02 engineering and technology010402 general chemistryPhotochemistryMicroscopy Atomic Force01 natural scienceslaw.inventionchemistry.chemical_compoundlawQuantum DotsSpectroscopy Fourier Transform InfraredGeneral Materials ScienceIrradiationParticle SizePhotosensitizing Agentsgraphene quantum dotsSinglet OxygenGraphenebusiness.industrySinglet oxygenElectron Spin Resonance Spectroscopy021001 nanoscience & nanotechnologygamma irradiation0104 chemical scienceschemistryPhotochemotherapyphotodynamic therapyQuantum dotGamma Raysgamma irradiation; graphene quantum dots; photodynamic therapy; photoluminescence; quantum yieldOptoelectronicsGraphiteSpectrophotometry Ultravioletphotoluminescence0210 nano-technologyLuminescencebusinessquantum yield
researchProduct

Antioxidative and Photo-Induced Effects of Different Types of N-Doped Graphene Quantum Dots.

2022

Due to the increasing number of bacterial infections and the development of resistivity toward antibiotics, new materials and approaches for treatments must be urgently developed. The production of new materials should be ecologically friendly considering overall pollution with chemicals and economically acceptable and accessible to the wide population. Thus, the possibility of using biocompatible graphene quantum dots (GQDs) as an agent in photodynamic therapy was studied. First, dots were obtained using electrochemical cutting of graphite. In only one synthetic step using gamma irradiation, GQDs were doped with N atoms without any reagent. Obtained dots showed blue photoluminescence, with…

antioxidantgraphene quantum dotsGraphene quantum dotsGamma-irradiationPhotodynamic therapygraphene quantum dots; N-doping; gamma-irradiation; photoluminescence; photodynamic therapy; antioxidant; antibacterial effectsphotodynamic therapygamma-irradiationAntibacterial effectsantibacterial effectsphotoluminescenceGeneral Materials ScienceAntioxidantPhotoluminescenceSettore CHIM/02 - Chimica FisicaN-dopingMaterials (Basel, Switzerland)
researchProduct