0000000000016759
AUTHOR
Pär-anders Söderström
Evidence for a spin-aligned neutron-proton paired phase from the level structure of (92)Pd
4 páginas, 4 figuras.-- El Pdf es la versión pre-print.-- et al.
Monte Carlo simulation of a single detector unit for the neutron detector array NEDA
WOS: 000301813500009
Isomers inPd128andPd126: Evidence for a Robust Shell Closure at the Neutron Magic Number 82 in Exotic Palladium Isotopes
The level structures of the very neutron-rich nuclei $^{128}\mathrm{Pd}$ and $^{126}\mathrm{Pd}$ have been investigated for the first time. In the $r$-process waiting-point nucleus $^{128}\mathrm{Pd}$, a new isomer with a half-life of $5.8(8)\text{ }\text{ }\ensuremath{\mu}\mathrm{s}$ is proposed to have a spin and parity of ${8}^{+}$ and is associated with a maximally aligned configuration arising from the ${g}_{9/2}$ proton subshell with seniority $\ensuremath{\upsilon}=2$. For $^{126}\mathrm{Pd}$, two new isomers have been identified with half-lives of 0.33(4) and $0.44(3)\text{ }\text{ }\ensuremath{\mu}\mathrm{s}$. The yrast ${2}^{+}$ energy is much higher in $^{128}\mathrm{Pd}$ than in…
Yrast 6+Seniority Isomers of136,138Sn
Delayed γ-ray cascades, originating from the decay of (6⁺) isomeric states, in the very neutron-rich, semimagic isotopes (136,138)Sn have been observed following the projectile fission of a ²³⁸U beam at RIBF, RIKEN. The wave functions of these isomeric states are proposed to be predominantly a fully aligned pair of f(7/2) neutrons. Shell-model calculations, performed using a realistic effective interaction, reproduce well the energies of the excited states of these nuclei and the measured transition rates, with the exception of the B(E2;6⁺→4⁺) rate of ¹³⁶Sn, which deviates from a simple seniority scheme. Empirically reducing the νf(7/2)(2) orbit matrix elements produces a 4₁⁺ state with alm…
1p3/2Proton-Hole State inSn132and the Shell Structure AlongN=82
5 pags. ; 3 figs. ; PACS numbers: 23.40.-s, 21.10.Pc, 27.60.+j, 21.60.Cs ; Taprogge, J., et al.
Monopole-Driven Shell Evolution below the Doubly Magic Nucleus Sn132 Explored with the Long-Lived Isomer in Pd126
A new isomer with a half-life of 23.0(8) ms has been identified at 2406 keV in (126)Pd and is proposed to have a spin and parity of 10(+) with a maximally aligned configuration comprising two neutron holes in the 1h(11/2) orbit. In addition to an internal-decay branch through a hindered electric octupole transition, β decay from the long-lived isomer was observed to populate excited states at high spins in (126)Ag. The smaller energy difference between the 10(+) and 7(-) isomers in (126)Pd than in the heavier N=80 isotones can be interpreted as being ascribed to the monopole shift of the 1h(11/2) neutron orbit. The effects of the monopole interaction on the evolution of single-neutron energ…
High-spin structure of Xe134
A. Vogt et al. ; 12 págs.; 9 figs.; 1 tab.
$^{78}$Ni revealed as a doubly magic stronghold against nuclear deformation
Nuclear magic numbers, which emerge from the strong nuclear force based on quantum chromodynamics, correspond to fully occupied energy shells of protons, or neutrons inside atomic nuclei. Doubly magic nuclei, with magic numbers for both protons and neutrons, are spherical and extremely rare across the nuclear landscape. While the sequence of magic numbers is well established for stable nuclei, evidence reveals modifications for nuclei with a large proton-to-neutron asymmetry. Here, we provide the first spectroscopic study of the doubly magic nucleus $^{78}$Ni, fourteen neutrons beyond the last stable nickel isotope. We provide direct evidence for its doubly magic nature, which is also predi…
In-beam γ -ray spectroscopy of the neutron-rich platinum isotope Pt200 toward the N=126 shell gap
The neutron-rich nucleus \nucleus{200}{Pt} is investigated via in-beam \gamma-ray spectroscopy in order to study the shape evolution in the neutron-rich platinum isotopes towards the N = 126 shell closure. The two-neutron transfer reaction \nucleus{198}{Pt}(\nucleus{82}{Se}, \nucleus{80}{Se})\nucleus{200}{Pt} is used to populate excited states of \nucleus{200}{Pt}. The Advanced Gamma Ray Tracking Array (AGATA) demonstrator coupled with the PRISMA spectrometer detects \gamma rays coincident with the \nucleus{80}{Se} recoils, the binary partner of \nucleus{200}{Pt}. The binary partner method is applied to extract the \gamma-ray transitions and build the level scheme of \nucleus{200}{Pt}. The …
Interaction position resolution simulations and in-beam measurements of the AGATA HPGe detectors
WOS: 000290082600015
AGATA-Advanced GAmma Tracking Array
WOS: 000300864200005