0000000000017613

AUTHOR

Annelies De Cuyper

The way wear goes: phytolith-based wear on the dentine–enamel system in guinea pigs (Cavia porcellus)

The effect of phytoliths on tooth wear and function has been contested in studies of animal–plant interactions. For herbivores whose occlusal chewing surface consists of enamel ridges and dentine tissue, the phytoliths might particularly erode the softer dentine, exposing the enamel ridges to different occlusal forces and thus contributing to enamel wear. To test this hypothesis, we fed guinea pigs (Cavia porcellus; n = 36 in six groups) for threeweeks exclusively on dry or fresh forage of low(lucerne), moderate (fresh timothy grass) or very high (bamboo leaves) silica content representing corresponding levels of phytoliths. We quantified the effect of these treatments with measuremen…

research product

Supplemental Material from The way wear goes: phytolith-based wear on the dentine–enamel system in guinea pigs (Cavia porcellus)

Additional table for individual tooth measurements as well as graphs illustrating tooth structure, tooth measurements and buccal tooth height.

research product

Forage silica and water content control dental surface texture in guinea pigs and provide implications for dietary reconstruction.

Significance Ingesta leave characteristic wear features on the tooth surface, which enable us to reconstruct the diet of extant and fossil vertebrates. However, whether dental wear is caused by internal (phytoliths) or external (mineral dust) silicate abrasives is controversially debated in paleoanthropology and biology. To assess this, we fed guinea pigs plant forages of increasing silica content (lucerne < grass < bamboo) without any external abrasives, both in fresh and dried state. Abrasiveness and enamel surface wear increased with higher forage phytolith content. Additionally, water loss altered plant material properties. Dental wear of fresh grass feeding was similar to lucerne brows…

research product

Fatty Acids of Microbial Origin in the Perirenal Fat of Rats (Rattus norvegicus domestica) and Guinea Pigs (Cavia porcellus) Fed Various Diets.

Guinea pigs are assumed to practice caecotrophy to a higher degree than rats. Studies from leporids suggest that through the practice of caecotrophy, hindgut fermenting species could build up microbial fatty acids (FA) in body tissues. We hypothesized that microbial FA would be detectable in the body tissue of guinea pigs and rats, and this to a higher degree in guinea pigs. Twenty-four rats and guinea pigs were fed with four different pelleted diets (lucerne-, meat-, meat-bone-, insect-based) in groups of six animals for 8 weeks. Perirenal adipose tissue differed in FA composition between the species in spite of the common diets. FA typically associated with microbial activity (saturated F…

research product

Digestion of bamboo compared to grass and lucerne in a small hindgut fermenting herbivore, the guinea pig (Cavia porcellus)

Bamboo is an enigmatic forage, representing a niche food for pandas and bamboo lemurs. Bamboo might not represent a suitable forage for herbivores relying on fermentative digestion, potentially due to its low fermentability. To test this hypothesis, guinea pigs (n = 36) were used as model species and fed ad libitum with one of three forages (bamboo, lucerne, or timothy grass) in a fresh or dried state, with six individuals per group, for 3 weeks. The nutrient composition and in vitro fermentation profile of bamboo displayed low fermentation potential, i.e. high lignin and silica levels together with a gas production (Hohenheim gas test) at 12 h of only 36% of that of lucerne and grass. Alth…

research product

Microwear textures associated with experimental near-natural diets suggest that seeds and hard insect body parts cause high enamel surface complexity in small mammals

In mammals, complex dental microwear textures (DMT) representing differently sized and shaped enamel lesions overlaying each other have traditionally been associated with the seeds and kernels in frugivorous diets, as well as with sclerotized insect cuticles. Recently, this notion has been challenged by field observations as well as in vitro experimental data. It remains unclear to what extent each food item contributes to the complexity level and is reflected by the surface texture of the respective tooth position along the molar tooth row. To clarify the potential of seeds and other abrasive dietary items to cause complex microwear textures, we conducted a controlled feeding experiment wi…

research product