0000000000017777
AUTHOR
Thorsten Trupke
A Novel Method for Characterizing Temperature Sensitivity of Silicon Wafers and Cells
In this paper, we present a novel method to obtain temperature dependent lifetime and implied-open-circuit voltage (iV OC ) images of silicon wafers and solar cells. First, the method is validated by comparing the obtained values with global values acquired from lifetime measurements (for wafers) and current-voltage measurements (for cells). The method is then extended to acquire spatially resolved images of iV OC temperature coefficients of silicon wafers and cells. Potential applications of the proposed method are demonstrated by investigating the temperature coefficients of various regions across multi-crystalline silicon wafers and cells from different heights of two bricks with differe…
Photoluminescence-Based Spatially Resolved Temperature Coefficient Maps of Silicon Wafers and Solar Cells
In this article, we present a method to obtain implied open-circuit voltage images of silicon wafers and cells at different temperatures. The proposed method is then demonstrated by investigating the temperature coefficients of various regions across multicrystalline silicon wafers and cells from different heights of two bricks with different dislocation densities. Interestingly, both low and high temperature coefficients are found in dislocated regions on the wafers. A large spread of temperature coefficient is observed at regions with similar performance at 298 K. Reduced temperature sensitivity is found to be correlated with the increasing brick height and is exhibited by both wafers and…