0000000000017833
AUTHOR
Klaus Blaum
Towards high-accuracy mass spectrometry of highly charged short-lived ions at ISOLTRAP
Dedicated to H.-J. Kluge on the occasion of his 65th birthday anniversary - Jürgen Kluge Special Issue; Multiply charged ions of stable xenon isotopes from a plasma ion source have been mass-selected by the on-line mass separator ISOLDE/CERN and delivered to the triple-trap mass spectrometer ISOLTRAP. The doubly charged ions that survived the charge-exchange processes during bunching and ion preparation were transferred to a precision Penning trap for mass determination. Mass values were obtained for the isotopes with mass numbers A=126,129,130,136. They are consistent with previous results except for the case of $^{126}Xe$ where a significant deviation from the literature value was found. …
A highly selective laser ion source for bunched, low emittance beam release
A novel type of resonance ionization laser ion source (RILIS) is under development, which combines the advantages of laser ionization with those of a source-implemented ion trap. This laser ion source trap (LIST) system, based on a gas-filled linear radio-frequency quadrupole ion trap, decouples the evaporation and ionization process by introduction of a primary surface ion repeller. Apart from significantly enhancing the selectivity in radioactive ion beam production, optimum control on the temporal pulse structure and the emittance of the generated laser ion bunch is obtained. A variety of operational modes from quasi-dc to microseconds-bunched ion beams with variable repetition rate can …
On-line implementation and first operation of the Laser Ion Source and Trap at ISOLDE/CERN
13 pags.; 12 figs.; 2 tab.; Open Access funded by CERN
Evidence for Increased neutron and proton excitations between 51−63 Mn
The hyperfine structures of the odd-even 51−63Mnatoms (N=26 −38) were measured using bunched beam collinear laser spectroscopy at ISOLDE, CERN. The extracted spins and magnetic dipole moments have been compared to large-scale shell-model calculations using different model spaces and effective interactions. In the case of 61,63Mn, the results show the increasing importance of neutron excitations across the N=40subshell closure, and of proton excitations across the Z=28shell gap. These measurements provide the first direct proof that proton and neutron excitations across shell gaps are playing an important role in the ground state wave functions of the neutron-rich Mn isotopes. publisher: Els…
The Ramsey method in high-precision mass spectrometry with Penning traps: Experimental results
The highest precision in direct mass measurements is obtained with Penning trap mass spectrometry. Most experiments use the interconversion of the magnetron and cyclotron motional modes of the stored ion due to excitation by external radiofrequency-quadrupole fields. In this work a new excitation scheme, Ramsey's method of time-separated oscillatory fields, has been successfully tested. It has been shown to reduce significantly the uncertainty in the determination of the cyclotron frequency and thus of the ion mass of interest. The theoretical description of the ion motion excited with Ramsey's method in a Penning trap and subsequently the calculation of the resonance line shapes for differ…
PIPERADE: A double Penning trap for mass separation and mass spectrometry at DESIR/SPIRAL2
International audience; A double Penning trap is being commissioned at CENBG Bordeaux for the future DESIR/SPIRAL2 facility of GANIL. The setup is designed to perform both high-resolution mass separation of the ion beam for trap-assisted spectroscopy, and high-accuracy mass spectrometry of short-lived nuclides. In this paper, the technical details of the new device are described. First offline tests with the purification trap are also presented, showing a mass resolving power of about 105.
Erratum to: “Mass measurements on neutron-deficient Sr and neutron-rich Sn isotopes with the ISOLTRAP mass spectrometer” [Nucl. Phys. A 763 (2005) 45]
Precision Physics in Penning Traps Using the Continuous Stern-Gerlach Effect
Abstract“A single atomic particle forever floating at rest in free space” (H. Dehmelt) would be the ideal object for precision measurements of atomic properties and for tests of fundamental theories. Such an ideal, of course, can ultimately never be achieved. A very close approximation to this ideal is made possible by ion traps, where electromagnetic forces are used to confine charged particles under well-controlled conditions for practically unlimited time. Concurrently, sensitive detection methods have been developed to allow observation of single stored ions. Various cooling methods can be employed to bring the trapped ion nearly to rest. Among different realisations of ion traps we con…
Observation of Spin Flips with a Single Trapped Proton
Radio-frequency induced spin transitions of one individual proton are observed for the first time. The spin quantum jumps are detected via the continuous Stern-Gerlach effect, which is used in an experiment with a single proton stored in a cryogenic Penning trap. This is an important milestone towards a direct high-precision measurement of the magnetic moment of the proton and a new test of the matter-antimatter symmetry in the baryon sector.
Laser resonance ionization for efficient and selective ionization of rare species
Abstract Due to the steady development and refinement of powerful pulsed as well as continuous-wave lasers, resonance ionization has developed into an extremely versatile tool for numerous applications. Apart from suppressing isobaric interferences and contributing to isotopic selectivity already in the ionization process, resonant optical excitation and ionization with laser light ensures high overall efficiency and good temporal and spatial controls of the ions delivered to mass spectrometric applications. In the field of rare isotope research laser resonance ionization has nowadays become one of the key techniques, including similarly the determination of long-lived or stable ultra-trace…
LC circuit mediated sympathetic cooling of a proton via image currents
Abstract Efficient cooling of trapped charged particles is essential in many fundamental physics experiments, for high-precision metrology, and for quantum technology. Until now, ion-ion coupling for sympathetic cooling or quantum state control has been limited to ion species with accessible optical transitions or has required close-range Coulomb interactions. To overcome this limitation and further develop scalable quantum control techniques, there has been a sustained desire to extend laser-cooling techniques to particles in macroscopically separated traps, opening quantum control techniques to previously inaccessible particles such as highly charged ions, molecular ions, and antimatter p…
Evolution of nuclear structure in neutron-rich odd-Zn isotopes and isomers
Collinear laser spectroscopy was performed on Zn (Z=30) isotopes at ISOLDE, CERN. The study of hyperfine spectra of nuclei across the Zn isotopic chain, N=33–49, allowed the measurement of nuclear spins for the ground and isomeric states in odd-A neutron-rich nuclei up to N=50. Exactly one long-lived (&
Direct limits on the interaction of antiprotons with axion-like dark matter
Astrophysical observations indicate that there is roughly five times more dark matter in the Universe than ordinary baryonic matter, with an even larger amount of the Universe's energy content due to dark energy. So far, the microscopic properties of these dark components have remained shrouded in mystery. In addition, even the five percent of ordinary matter in our Universe has yet to be understood, since the Standard Model of particle physics lacks any consistent explanation for the predominance of matter over antimatter. Inspired by these central problems of modern physics, we present here a direct search for interactions of antimatter with dark matter, and place direct constraints on th…
Chapter 7 HITRAP: A Facility at GSI for Highly Charged Ions
Abstract An overview and status report of the new trapping facility for highly charged ions at the Gesellschaft fur Schwerionenforschung is presented. The construction of this facility started in 2005 and is expected to be completed in 2008. Once operational, highly charged ions will be loaded from the experimental storage ring ESR into the HITRAP facility, where they are decelerated and cooled. The kinetic energy of the initially fast ions is reduced by more than fourteen orders of magnitude and their thermal energy is cooled to cryogenic temperatures. The cold ions are then delivered to a broad range of atomic physics experiments.
Mass Measurement on the rp-Process Waiting Point 72Kr
The mass of one of the three major waiting points in the astrophysical rp process $^{72}$Kr was measured for the first time with the Penning trap mass spectrometer ISOLTRAP. The measurement yielded a relative mass uncertainty of $\deltam/m = 1.2\times 10–7 (\deltam$ = 8 keV). $^{73,74}$Kr, also needed for astrophysical calculations, were measured with more than 1 order of magnitude improved accuracy. We use the ISOLTRAP masses of $^{72–74}$Kr to reanalyze the role of $^{72}$Kr (T$_{1/2}$ = 17.2 s) in the rp process during x-ray bursts and conclude that $^{72}$Kr is a strong waiting point delaying the burst duration with at least 80\% of its $\beta$-decay half-life.
Measurement of the Spin and Magnetic Moment ofMg31: Evidence for a Strongly Deformed Intruder Ground State
Unambiguous values of the spin and magnetic moment of $^{31}\mathrm{M}\mathrm{g}$ are obtained by combining the results of a hyperfine-structure measurement and a $\ensuremath{\beta}$-NMR measurement, both performed with an optically polarized ion beam. With a measured nuclear $g$ factor and spin $I=1/2$, the magnetic moment $\ensuremath{\mu}(^{31}\mathrm{M}\mathrm{g})=\ensuremath{-}0.88355(15){\ensuremath{\mu}}_{N}$ is deduced. A revised level scheme of $^{31}\mathrm{M}\mathrm{g}$ ($Z=12$, $N=19$) with ground state spin/parity ${I}^{\ensuremath{\pi}}=1/{2}^{+}$ is presented, revealing the coexistence of 1p-1h and 2p-2h intruder states below 500 keV. Advanced shell-model calculations and th…
Nuclear Charge Radius ofBe12
The nuclear charge radius of $^{12}\mathrm{Be}$ was precisely determined using the technique of collinear laser spectroscopy on the $2{s}_{1/2}\ensuremath{\rightarrow}2{p}_{1/2,3/2}$ transition in the ${\mathrm{Be}}^{+}$ ion. The mean square charge radius increases from $^{10}\mathrm{Be}$ to $^{12}\mathrm{Be}$ by $\ensuremath{\delta}⟨{r}_{c}^{2}{⟩}^{10,12}=0.69(5)\text{ }\text{ }{\mathrm{fm}}^{2}$ compared to $\ensuremath{\delta}⟨{r}_{c}^{2}{⟩}^{10,11}=0.49(5)\text{ }\text{ }{\mathrm{fm}}^{2}$ for the one-neutron halo isotope $^{11}\mathrm{Be}$. Calculations in the fermionic molecular dynamics approach show a strong sensitivity of the charge radius to the structure of $^{12}\mathrm{Be}$. Th…
Eine Waage für exotische Kerne: Massenbestimmung von Atomkernen mit Isoltrap
Die prazise Massenbestimmung von Atomkernen ist fur verschiedene Gebiete der Physik interessant. Penning-Fallen-Massenspektrometer wie Isoltrap am CERN konnen auch kurzlebige exotische Kerne “wiegen”, die zuvor im Labor erzeugt wurden. Die genaue Kenntnis ihrer Masse ist ein Schlussel zum Verstandnis dafur, wie Sterne, Novae und Supernovae Elemente erbruten, die schwerer als Helium sind. Isoltrap ermoglicht auch einen Test des Standardmodells: Die prazise Bestimmung von Kernmassen vor und nach einem radioaktiven Zerfall liefert wichtige Informationen uber die Natur der elektroschwachen Wechselwirkung.
Laser Spectroscopy of Neutron-Rich Hg207,208 Isotopes: Illuminating the Kink and Odd-Even Staggering in Charge Radii across the N=126 Shell Closure
The mean-square charge radii of $^{207,208}$Hg ($Z=80, N=127,128$) have been studied for the first time and those of $^{202,203,206}$Hg ($N=122,123,126$) remeasured by the application of in-source resonance-ionization laser spectroscopy at ISOLDE (CERN). The characteristic \textit{kink} in the charge radii at the $N=126$ neutron shell closure has been revealed, providing the first information on its behavior below the $Z=82$ proton shell closure. A theoretical analysis has been performed within relativistic Hartree-Bogoliubov and non-relativistic Hartree-Fock-Bogoliubov approaches, considering both the new mercury results and existing lead data. Contrary to previous interpretations, it is d…
Nuclear masses and the origin of the elements
Penning traps as a versatile tool for precise experiments in fundamental physics
This review article describes the trapping of charged particles. The main principles of electromagnetic confinement of various species from elementary particles to heavy atoms are briefly described. The preparation and manipulation with trapped single particles, as well as methods of frequency measurements, providing unprecedented precision, are discussed. Unique applications of Penning traps in fundamental physics are presented. Ultra-precise trap-measurements of masses and magnetic moments of elementary particles (electrons, positrons, protons and antiprotons) confirm CPT-conservation, and allow accurate determination of the fine-structure constant alpha and other fundamental constants. T…
Mass spectrometry and decay spectroscopy of isomers across the Z=82 shell closure
Recent results from a measurement campaign studying the isomerism in neutron-deficient Tl isotopes are presented. The measurements make use of a nuclear spectroscopy setup coupled to the high-resolution Penning-trap mass spectrometer ISOLTRAP at CERN's radioactive ion-beam facility ISOLDE. The mass values of 190,194Tl are improved and a mass-spin-state assignment is carried out. An additional mass measurement of the grandparent nuclide 198At allows the deduction of the spin-state ordering in 190Tl. As a result, the excitation energies of the isomers in both Tl isotopes are determined for the first time to Eex(194Tl)=260(15) keV and E ex(190Tl)=89(12) keV. Furthermore, this allows anchoring …
ISOLTRAP mass measurements of exotic nuclides at
The ISOLTRAP experiment at the ISOLDE facility at CERN is a Penning trap mass spectrometer for on-line mass measurements on short-lived radionuclides. It allows the determination of atomic masses of exotic nuclides with a relative uncertainty of only 10−8. The results provide important information for, e.g., weak interaction studies and nuclear models. Recent ISOLTRAP investigations and applications of high-precision mass measurements are discussed.
Qvalue and half-life of double-electron capture in184Os
The observation of neutrinoless double-beta transitionswould reveal physics beyond the Standard Model, asit would establish neutrinos to be Majorana particles,which implies a violation of the lepton number conserva-tion. Experiments searching for these transitions have fo-cused on the detection of neutrinoless double-beta decay(0 ) rather than neutrinoless double-electron capture(0). One reason among others is in general the sig-ni cantly shorter half-life of the 0 process. However,in the case of neutrinoless double-electron capture, thetransition is expected to be resonantly enhanced if theinitial and the nal state of the transition are degeneratein energy [1{3].In this work, we inves…
Production of highly charged ions of rare species by laser-induced desorption inside an electron beam ion trap
This paper reports on the development and testing of a novel, highly efficient technique for the injection of very rare species into electron beam ion traps (EBITs) for the production of highly charged ions (HCI). It relies on in-trap laser-induced desorption of atoms from a sample brought very close to the electron beam resulting in a very high capture efficiency in the EBIT. We have demonstrated a steady production of HCI of the stable isotope 165Ho from samples of only 1012 atoms (∼300 pg) in charge states up to 45+. HCI of these species can be subsequently extracted for use in other experiments or stored in the trapping volume of the EBIT for spectroscopic measurements. The high efficie…
Nuclear mean-square charge radii of63,64,66,68−82Ga nuclei: No anomalous behavior atN=32
Collinear laser spectroscopy was performed on the ${}^{63,64,66,68\ensuremath{-}82}$Ga isotopes with neutron numbers from $N=32$ to $N=51$. These measurements were carried out at the ISOLDE radioactive ion beam facility at CERN. Here we present the nuclear mean-square charge radii extracted from the isotope shifts and, for the lighter isotopes, new spin and moment values. New ground-state nuclear spin and moments were extracted from the hyperfine spectra of ${}^{63,70}$Ga, measured on an atomic transition in the neutral atom. The ground-state spin of ${}^{63}$Ga is determined to be $I=3/2$. Analysis of the trend in the change in mean-square charge radii of the gallium isotopes demonstrates …
A test of charge-parity-time invariance at the atto-electronvolt scale
We developed a novel fast measurement procedure for cyclotron frequency comparisons of two individual particles in a Penning trap, which enabled us to compare the charge-to-mass ratio of the proton and the antiproton with a fractional precision of 69 parts per trillion. To date this is the most precise test of charge-parity-time invariance using baryons. Our measurements were performed at cyclotron frequencies of about 30 MHz, which means that charge-parity-time symmetry holds at the atto-electronvolt scale.
Recent developments for high-precision mass measurements of the heaviest elements at SHIPTRAP
Abstract Atomic nuclei far from stability continue to challenge our understanding. For example, theoretical models have predicted an “island of stability” in the region of the superheavy elements due to the closure of spherical proton and neutron shells. Depending on the model, these are expected at Z = 114, 120 or even 126 and N = 172 or 184. Valuable information on the road to the island of stability is derived from high-precision mass measurements, which give direct access to binding energies of short-lived trans-uranium nuclei. Recently, direct mass measurements at SHIPTRAP have been extended to nobelium and lawrencium isotopes around the deformed shell gap N = 152. In order to further …
High-resolution laser spectroscopy of Al27–32
Hyperfine spectra of $^\text{27-32}$Al ($Z=13$) have been measured at the ISOLDE-CERN facility via collinear laser spectroscopy using the $3s^23p\ ^2\text{P}^\text{o} _{3/2}\rightarrow 3s^24s\ ^2\text{S}_{1/2}$ atomic transition. For the first time, mean-square charge radii of radioactive aluminum isotopes have been determined alongside the previously unknown magnetic dipole moment of $^{29}$Al and electric quadrupole moments of $^{29,30}$Al. A potentially reduced charge radius at $N=19$ may suggest an effect of the $N=20$ shell closure, which is visible in the Al chain, contrary to other isotopic chains in the $sd$ shell. The experimental results are compared to theoretical calculations in…
High-precision measurement of the atomic mass of the electron
A very precise measurement of the magnetic moment of a single electron bound to a carbon nucleus, combined with a state-of-the-art calculation in the framework of bound-state quantum electrodynamics, gives a new value of the atomic mass of the electron that is more precise than the currently accepted one by a factor of 13. The atomic mass of the electron is a key parameter for fundamental physics. A precise determination is a challenge because the mass is so low. Sven Sturm and colleagues report on a new determination of the electron's mass in atomic units. The authors measured the magnetic moment of a single electron bound to a reference ion (a bare nucleus of carbon-12). The results were …
Precision Mass Measurements of Cr58–63 : Nuclear Collectivity Towards the N=40 Island of Inversion
The neutron-rich isotopes $^{58-63}$Cr were produced for the first time at the ISOLDE facility and their masses were measured with the ISOLTRAP spectrometer. The new values are up to 300 times more precise than those in the literature and indicate significantly different nuclear structure from the new mass-surface trend. A gradual onset of deformation is found in this proton and neutron mid-shell region, which is a gateway to the second island of inversion around \emph{N}=40. In addition to comparisons with density-functional theory and large-scale shell-model calculations, we present predictions from the valence-space formulation of the \emph{ab initio} in-medium similarity renormalization…
Recent Exploits of the ISOLTRAP Mass Spectrometer
Abstract The Penning-trap mass spectrometer ISOLTRAP, located at the isotope-separator facility ISOLDE (CERN), is presented in its current form taking into account technical developments since 2007. Three areas of developments are presented. The reference ion sources have been modified to guarantee a sufficient supply of reference ions for mass measurements and systematic studies. Different excitation schemes have been investigated for manipulation of the ion motion in the Penning trap, to enhance either the purification or measurement process. A multi-reflection time-of-flight mass separator has been implemented and can now be routinely used for purification and as a versatile tool for bea…
Nuclear masses in astrophysics
Among all nuclear ground-state properties, atomic masses are highly specific for each particular combination of N and Z and the data obtained apply to a variety of physics topics. One of the most crucial questions to be addressed in mass spectrometry of unstable radionuclides is the one of understanding the processes of element formation in the Universe. To this end, accurate atomic mass values of a large number of exotic nuclei participating in nucleosynthesis are among the key input data in large-scale reaction network calculations. In this paper, a review on the latest achievements in mass spectrometry for nuclear astrophysics is given.
Octupolar-Excitation Penning-Trap Mass Spectrometry forQ-Value Measurement of Double-Electron Capture inEr164
The theory of octupolar-excitation ion-cyclotron-resonance mass spectrometry is presented which predicts an increase of up to several orders of magnitude in resolving power under certain conditions. The new method has been applied for a direct Penning-trap mass-ratio determination of the $^{164}\mathrm{Er}\mathrm{\text{\ensuremath{-}}}^{164}\mathrm{Dy}$ mass doublet. $^{164}\mathrm{Er}$ is a candidate for the search for neutrinoless double-electron capture. However, the measured ${Q}_{ϵϵ}$ value of 25.07(12) keV results in a half-life of ${10}^{30}$ years for a 1 eV Majorana-neutrino mass.
Direct mass measurements of cadmium and palladium isotopes and their double-βtransitionQvalues
The Q-value of the double-electron capture in Cd-108 has been determined to be (272.04 +/- 0.55) keV in a direct measurement with the double-Penning trap mass spectrometer TRIGA-TRAP. Based on this result a resonant enhancement of the decay rate of Cd-108 is excluded. We have confirmed the double-beta transition Q-values of Cd-106 and Pd-110 recently measured with the Penning-trap mass spectrometers SHIPTRAP and ISOLTRAP, respectively. Furthermore, the atomic masses of the involved nuclides Cd-106, Cd-108, Cd-110, Pd-106, Pd-108 and Pd-110 have been directly linked to the atomic mass standard.
Spins and Magnetic Moments ofK49andK51: Establishing the1/2+and3/2+Level Ordering BeyondN=28
The ground-state spins and magnetic moments of $^{49,51}\mathrm{K}$ have been measured using bunched-beam high-resolution collinear laser spectroscopy at ISOLDE CERN. For $^{49}\mathrm{K}$ a ground-state spin $I=1/2$ was firmly established. The observed hyperfine structure of $^{51}\mathrm{K}$ requires a spin $Ig1/2$ and strongly suggests $I=3/2$. From its magnetic moment $\ensuremath{\mu}(^{51}\mathrm{K})=+0.5129(22){\ensuremath{\mu}}_{N}$ a spin-parity ${I}^{\ensuremath{\pi}}=3/{2}^{+}$ with a dominant $\ensuremath{\pi}1{d}_{3/2}^{\ensuremath{-}1}$ hole configuration was deduced. This establishes for the first time the reinversion of the single-particle levels and illustrates the prominen…
The cryogenic gas stopping cell of SHIPTRAP
The overall efficiency of the Penning-trap mass spectrometer SHIPTRAP at GSI Darmstadt, employed for high-precision mass measurements of exotic nuclei in the mass region above fermium, is presently mostly limited by the stopping and extraction of fusion-evaporation products in the SHIPTRAP gas cell. To overcome this limitation a second-generation gas cell with increased stopping volume was designed. In addition, its operation at cryogenic temperatures leads to a higher gas density at a given pressure and an improved cleanliness of the helium buffer gas. Here, the results of experiments with a 219Rn recoil ion source are presented. An extraction efficiency of 74(3)% was obtained, a significa…
Sixfold improved single particle measurement of the magnetic moment of the antiproton
Our current understanding of the Universe comes, among others, from particle physics and cosmology. In particle physics an almost perfect symmetry between matter and antimatter exists. On cosmological scales, however, a striking matter/antimatter imbalance is observed. This contradiction inspires comparisons of the fundamental properties of particles and antiparticles with high precision. Here we report on a measurement of the g-factor of the antiproton with a fractional precision of 0.8 parts per million at 95% confidence level. Our value /2=2.7928465(23) outperforms the previous best measurement by a factor of 6. The result is consistent with our proton g-factor measurement gp/2=2.7928473…
An ion cooler-buncher for high-sensitivity collinear laser spectroscopy at ISOLDE
International audience; A gas-filled segmented linear Paul trap has been installed at the focal plane of the high-resolution separator (HRS) at CERN-ISOLDE. As well as providing beams with a reduced transverse emittance, this device is also able to accumulate the ions and release the sample in bunches with a well-defined time structure. This has recently permitted collinear laser spectroscopy with stable and radioactive bunched beams to be demonstrated at ISOLDE. Surface-ionized 39, 44, 46K and 85Rb beams were accelerated to 30keV, mass separated and injected into the trap for subsequent extraction and delivery to the laser setup. The ions were neutralized in a charge exchange cell and exci…
Towards a magnetic field stabilization at ISOLTRAP for high-accuracy mass measurements on exotic nuclides
Abstract The field stability of a mass spectrometer plays a crucial role in the accuracy of mass measurements. In the case of mass determination of short-lived nuclides with a Penning trap, major causes of fluctuations are temperature variations in the vicinity of the trap and pressure changes in the liquid helium cryostat of the superconducting magnet. Thus systems for the temperature and pressure stabilization of the Penning trap mass spectrometer ISOLTRAP at the ISOLDE facility at CERN have been installed. A reduction of the temperature and pressure fluctuations by at least an order of magnitude down to Δ T ≈ ± 5 mK and Δ p ≈ ± 5 Pa has been achieved, which corresponds to a relative magn…
Examining the N=28 shell closure through high-precision mass measurements of Ar46–48
The strength of the $N=28$ magic number in neutron-rich argon isotopes is examined through high-precision mass measurements of $^{46\text{--}48}\mathrm{Ar}$, performed with the ISOLTRAP mass spectrometer at ISOLDE/CERN. The new mass values are up to 90 times more precise than previous measurements. While they suggest the persistence of the $N=28$ shell closure for argon, we show that this conclusion has to be nuanced in light of the wealth of spectroscopic data and theoretical investigations performed with the SDPF-U phenomenological shell model interaction. Our results are also compared with ab initio calculations using the valence space in-medium similarity renormalization group and the s…
Isoltrap pins down masses of exotic nuclides
The mass of radionuclides contribute to a variety of fundamental studies including tests of the weak interaction and the Standard Model. The limits of mass measurements of exotic nuclides have been extended considerably by the Penning-trap mass spectrometer ISOLTRAP at the ISOLDE facility at CERN. Recent ISOLTRAP measurements are summarized and current technical improvements are outlined.
Nuclear Spins and Magnetic Moments ofCu71,73,75: Inversion ofπ2p3/2andπ1f5/2Levels inCu75
We report the first confirmation of the predicted inversion between the pi2p3/2 and pi1f5/2 nuclear states in the nu(g)9/2 midshell. This was achieved at the ISOLDE facility, by using a combination of in-source laser spectroscopy and collinear laser spectroscopy on the ground states of 71,73,75Cu, which measured the nuclear spin and magnetic moments. The obtained values are mu(71Cu)=+2.2747(8)mu(N), mu(73Cu)=+1.7426(8)mu(N), and mu(75Cu)=+1.0062(13)mu(N) corresponding to spins I=3/2 for 71,73Cu and I=5/2 for 75Cu. The results are in fair agreement with large-scale shell-model calculations.
Simple Nuclear Structure inCd111–129from Atomic Isomer Shifts
Isomer shifts have been determined in ^{111-129}Cd by high-resolution laser spectroscopy at CERN-ISOLDE. The corresponding mean square charge-radii changes, from the 1/2^{+} and the 3/2^{+} ground states to the 11/2^{-} isomers, have been found to follow a distinct parabolic dependence as a function of the atomic mass number. Since the isomers have been previously associated with simplicity due to the linear mass dependence of their quadrupole moments, the regularity of the isomer shifts suggests a higher order of symmetry affecting the ground states in addition. A comprehensive description assuming nuclear deformation is found to accurately reproduce the radii differences in conjunction wi…
First operation of the KATRIN experiment with tritium
AbstractThe determination of the neutrino mass is one of the major challenges in astroparticle physics today. Direct neutrino mass experiments, based solely on the kinematics of $$\upbeta $$β-decay, provide a largely model-independent probe to the neutrino mass scale. The Karlsruhe Tritium Neutrino (KATRIN) experiment is designed to directly measure the effective electron antineutrino mass with a sensitivity of $$0.2\hbox { eV}$$0.2eV ($$90\%$$90% CL). In this work we report on the first operation of KATRIN with tritium which took place in 2018. During this commissioning phase of the tritium circulation system, excellent agreement of the theoretical prediction with the recorded spectra was …
Surveying the N=40 island of inversion with new manganese masses
High-precision mass measurements of neutron-rich 57−66Mn and 61−63Fe isotopes are reported. The new mass surface shows no shell closure at N=40. In contrast, there is an increase of the two-neutron separation energy at N=38. This behavior is consistent with the onset of collectivity due to the occupation of intruder states from higher orbits, in analogy with the well known “island of inversion” around N=20. Our results indicate that the neutron-rich Mn isotopes, starting from 63Mn, are most likely within the new island of inversion. From the new mass surface, we evaluate the empirical proton-neutron interaction and the pairing gap, both playing a significant role in the structural changes i…
The decay energy of the pure s-process nuclide ¹²³ Te
Physics letters / B 758, 407 - 411 (2016). doi:10.1016/j.physletb.2016.04.059
A reservoir trap for antiprotons
We have developed techniques to extract arbitrary fractions of antiprotons from an accumulated reservoir, and to inject them into a Penning-trap system for high-precision measurements. In our trap-system antiproton storage times > 1.08 years are estimated. The device is fail-safe against power-cuts of up to 10 hours. This makes our planned comparisons of the fundamental properties of protons and antiprotons independent from accelerator cycles, and will enable us to perform experiments during long accelerator shutdown periods when background magnetic noise is low. The demonstrated scheme has the potential to be applied in many other precision Penning trap experiments dealing with exotic p…
Billion-Fold Enhancement in Sensitivity of Nuclear Magnetic Resonance Spectroscopy for Magnesium Ions in Solution
Beta-nuclear magnetic resonance (NMR) spectroscopy is highly sensitive compared to conventional NMR spectroscopy, and may be applied for several elements across the periodic table. Beta-NMR has previously been successfully applied in the fields of nuclear and solid-state physics. In this work, beta-NMR is applied, for the first time, to record an NMR spectrum for a species in solution. 31Mg b-NMR spectra are measured for as few as 10^7 magnesium ions in ionic liquid (EMIM-Ac) within minutes, as a prototypical test case. Resonances are observed at 3882.9 and 3887.2 kHz in an external field of 0.3 T. The key achievement of the current work is to demonstrate that beta-NMR is applicable for the…
A novel scheme for a highly selective laser ion source
A new type of resonance ionization laser ion source, which shall combine the advantages of a laser ion source with those of an ion trap, is proposed. The primary purpose of such a laser ion source trap, which is based on a gas-filled linear radio-frequency quadrupole ion trap system, is the decoupling of evaporation and ionization processes. Furthermore optimum temporal control on the generated ion bunch is obtained. Both effects will lead to a significantly increased isobaric selectivity and ion beams of low emittance. A large variety of operational modes, ranging from quasi-dc to microseconds-bunched radioactive ion beams with variable pulse width and repetition rate, can be chosen freely…
Penning-trap mass spectrometry and mean-field study of nuclear shape coexistence in the neutron-deficient lead region
We present a study of nuclear shape coexistence in the region of neutron-deficient lead isotopes. The midshell gold isotopes 180,185,188,190Au (Z=79), the two long-lived nuclear states in 197At (Z=85), and the neutron-rich nuclide 219At were produced by the ISOLDE facility at CERN and their masses were determined with the high-precision Penning-trap mass spectrometer ISOLTRAP. The studied gold isotopes address the trend of binding energies in a region of the nuclear chart where the nuclear charge radii show pronounced discontinuities. Significant deviations from the atomic-mass evaluation were found for 188,190Au. The new trend of two-neutron separation energies is smoother, although it doe…
Precision Measurement ofLi11Moments: Influence of Halo Neutrons on theLi9Core
The electric quadrupole moment and the magnetic moment of the 11Li halo nucleus have been measured with more than an order of magnitude higher precision than before, |Q| = 33.3(5) mb and mu = +3.6712(3)muN, revealing a 8.8(1.5)% increase of the quadrupole moment relative to that of 9Li. This result is compared to various models that aim at describing the halo properties. In the shell model an increased quadrupole moment points to a significant occupation of the 1d orbits, whereas in a simple halo picture this can be explained by relating the quadrupole moments of the proton distribution to the charge radii. Advanced models so far fail to reproduce simultaneously the trends observed in the r…
Ground-state spins and moments of72,74,76,78Ga nuclei
Laser spectroscopy was performed on the ${}^{72,74,76,78}$Ga isotopes at On-Line Isotope Mass Separator (ISOLDE) facility, CERN. Ground-state nuclear spins and moments were extracted from the measured hyperfine spectra. The results are compared to shell-model calculations, which provide a detailed probe of the nuclear wave function. The spin is established from the shape of the hyperfine structure and the parity inferred from a comparison of shell-model calculations with the measured nuclear moments. The ground states of ${}^{76,78}$Ga are both assigned a spin and parity of ${I}^{\ensuremath{\pi}}={2}^{\ensuremath{-}}$, while ${}^{74}$Ga is tentatively assigned as ${I}^{\ensuremath{\pi}}={3…
Spin and Magnetic Moment ofMg33: Evidence for a Negative-Parity Intruder Ground State
We report on the first determination of the nuclear ground-state spin of $^{33}\mathrm{Mg}$, $I=3/2$, and its magnetic moment, $\ensuremath{\mu}=\ensuremath{-}0.7456(5)\text{ }{\ensuremath{\mu}}_{N}$, by combining laser spectroscopy with nuclear magnetic resonance techniques. These values are inconsistent with an earlier suggested 1 particle-1 hole configuration and provide evidence for a 2 particle-2 hole intruder ground state with negative parity. The results are in agreement with an odd-neutron occupation of the $3/2\text{ }[321]$ Nilsson orbital at a large prolate deformation. The discussion emphasizes the need of further theoretical and experimental investigation of the island of inver…
A New Experiment for the Measurement of the g-Factors of 3He+ and 3He2+.
We describe a new experiment that aims at a parts per billion measurement of the nuclear magnetic moment of 3He2+ and a 100 parts per trillion measurement of the Zeeman effect of the ground-state hyperfine splitting of 3He+. To enable ultrafast and efficient experiment cycles the experiment relies on new technologies such as sympathetic laser cooling of single 3He-ions coupled to a cloud of Doppler-cooled 9Be-ions in a Penning trap or a novel spin-state detection scheme.
Probing the nuclide 180W for neutrinoless double-electron capture exploration
Abstract The mass difference of the nuclides 180 W and 180 Hf has been measured with the Penning-trap mass spectrometer SHIPTRAP to investigate 180 W as a possible candidate for the search for neutrinoless double-electron capture. The Q ϵ ϵ -value was measured to 143.20(27) keV. This value in combination with the calculations of the atomic electron wave functions and other parameters results in a half-life of the 0 + → 0 + ground-state to ground-state double-electron capture transition of approximately 5 × 10 27 years / 〈 m ϵ ϵ [ eV ] 〉 2 .
Direct Measurement of the Free Cyclotron Frequency of a Single Particle in a Penning Trap
A measurement scheme for the direct determination of the free cyclotron frequency ${\ensuremath{\nu}}_{c}$ of a single particle stored in a Penning trap is described. The method is based on the dressed states of mode coupling. In this novel measurement scheme both radial modes of the single trapped particle are simultaneously coupled to the axial oscillation mode.
HITRAP – a facility for experiments on heavy highly charged ions and on antiprotons
HITRAP is a facility for very slow highly-charged heavy ions at GSI. HITRAP uses the GSI relativistic ion beams, the Experimental Storage Ring ESR for electron cooling and deceleration to 4 MeV/u, and consists of a combination of an interdigital H-mode (IH) structure with a radiofrequency quadrupole structure for further deceleration to 6 keV/u, and a Penning trap for accumulation and cooling to low temperatures. Finally, ion beams with low emittance will be delivered to a large variety of atomic and nuclear physics experiments. Presently, HITRAP is in the commissioning phase. The deceleration of heavy-ion beam from the ESR storage ring to an energy of 500 keV/u with the IH structure has be…
Double-βtransformations in isobaric triplets with mass numbersA=124, 130, and 136
The Q values of double-electron capture in ${}^{124}$Xe, ${}^{130}$Ba, and ${}^{136}$Ce and double-beta decay of ${}^{124}$Sn and ${}^{130}$Te have been determined with the Penning-trap mass spectrometer SHIPTRAP with a few hundred eV uncertainty. These nuclides are members of three isobaric triplets with common daughter nuclides. The main goal of this work was to investigate the existence of the resonant enhancement of the neutrinoless double-electron-capture rates in ${}^{124}$Xe and ${}^{130}$Ba in order to assess their suitability for the search for neutrinoless double-electron capture. Based on our results, in neither of these cases is the resonance condition fulfilled.
Resolution of Single Spin Flips of a Single Proton
The spin magnetic moment of a single proton in a cryogenic Penning trap was coupled to the particle's axial motion with a superimposed magnetic bottle. Jumps in the oscillation frequency indicate spin-flips and were identified using a Bayesian analysis.
A battery-based, low-noise voltage source.
A highly stable, low-noise voltage source was designed to improve the stability of the electrode bias voltages of a Penning trap. To avoid excess noise and ground loops, the voltage source is completely independent of the public electric network and uses a 12 V car battery to generate output voltages of +/-15 and +/-5 V. First, the dc supply voltage is converted into ac-voltage and gets amplified. Afterwards, the signal is rectified, filtered, and regulated to the desired output value. Each channel can deliver up to 1.5 A. The current as well as the battery voltage and the output voltages can be read out via a universal serial bus (USB) connection for monitoring purposes. With the presented…
High-accuracy mass spectrometry with stored ions
Abstract Like few other parameters, the mass of an atom, and its inherent connection with the atomic and nuclear binding energy is a fundamental property, a unique fingerprint of the atomic nucleus. Each nuclide comes with its own mass value different from all others. For short-lived exotic atomic nuclei the importance of its mass ranges from the verification of nuclear models to a test of the Standard Model, in particular with regard to the weak interaction and the unitarity of the Cabibbo–Kobayashi–Maskawa quark mixing matrix. In addition, accurate mass values are important for a variety of applications that extend beyond nuclear physics. Mass measurements on stable atoms now reach a rela…
Critical-Point Boundary for the Nuclear Quantum Phase Transition NearA=100from Mass Measurements ofKr96,97
Mass measurements of (96,97)Kr using the ISOLTRAP Penning-trap spectrometer at CERN-ISOLDE are reported, extending the mass surface beyond N=60 for Z=36. These new results show behavior in sharp contrast to the heavier neighbors where a sudden and intense deformation is present. We interpret this as the establishment of a nuclear quantum phase transition critical-point boundary. The new masses confirm findings from nuclear mean-square charge-radius measurements up to N=60 but are at variance with conclusions from recent gamma-ray spectroscopy.
Improved limit on the directly measured antiproton lifetime
Continuous monitoring of a cloud of antiprotons stored in a Penning trap for 405 days enables us to set an improved limit on the directly measured antiproton lifetime. From our measurements we extract a storage time of $3.15\times {10}^{8}$ equivalent antiproton-seconds, resulting in a lower lifetime limit of ${\tau }_{\bar{{\rm{p}}}}\gt 10.2\,{\rm{a}}$ with a confidence level of $68 \% $. This result improves the limit on charge-parity-time violation in antiproton decays based on direct observation by a factor of 7.
Precision mass measurements for nuclear astro- and neutrino physics
Nuclear masses are indispensable ingredients in numerous physics applications ranging from nuclear structure physics, where, e.g., the shell closures and nucleon correlation energies can be studied by accurate mass measurements, via the nuclear astrophysics, where the masses of nuclei far from the valley of β-stability determine the pathways of, e.g., rp-and r-processes of nucleosynthesis in stars, to tests of the standard model and fundamental interactions, where, e.g., the very-accurate masses of parent and superallowed β-decay daughter nuclei serve as one of inputs for the checking of the unitarity of the CKM quark-mixing matrix. In this review we focus on recent direct mass measurements…
Reduction of stored-particle background by a magnetic pulse method at the KATRIN experiment
Arenz, M., et al. “Reduction of Stored-Particle Background by a Magnetic Pulse Method at the KATRIN Experiment.” The European Physical Journal C, vol. 78, no. 9, Sept. 2018. © 2018 The Authors
High-precision comparison of the antiproton-to-proton charge-to-mass ratio
Invariance under the charge, parity, time-reversal (CPT) transformation$^{1}$ is one of the fundamental symmetries of the standard model of particle physics. This CPT invariance implies that the fundamental properties of antiparticles and their matter-conjugates are identical, apart from signs. There is a deep link between CPT invariance and Lorentz symmetry—that is, the laws of nature seem to be invariant under the symmetry transformation of spacetime—although it is model dependent$^{2}$. A number of high-precision CPT and Lorentz invariance tests—using a co-magnetometer, a torsion pendulum and a maser, among others—have been performed$^{3}$, but only a few direct high-precision CPT tests …
Investigation of Space-Charge Phenomena in Gas-Filled Penning Traps
The centering of ions in Penning traps by a quadrupolar radiofrequency excitation in the presence of a buffer gas has been studied in the regime of high charge‐densities. It is found to deviate significantly from the single‐particle situation. In particular, the efficiency of the cooling process is affected as well as the resolving power. The behavior has been studied experimentally at the preparation trap REXTRAP and the high‐precision Penning trap setup ISOLTRAP both located at the on‐line mass separator ISOLDE at CERN. In addition, the phenomenon has been investigated numerically by a custom‐designed simulation.
Charge radii, moments, and masses of mercury isotopes across the N=126 shell closure
Combining laser spectroscopy in a Versatile Arc Discharge and Laser Ion Source, with Penning-trap mass spectrometry at the CERN-ISOLDE facility, this work reports on mean-square charge radii of neutron-rich mercury isotopes across the $N = 126$ shell closure, the electromagnetic moments of $^{207}$Hg and more precise mass values of $^{206-208}$Hg. The odd-even staggering (OES) of the mean square charge radii and the kink at $N = 126$ are analyzed within the framework of covariant density functional theory (CDFT), with comparisons between different functionals to investigate the dependence of the results on the underlying single-particle structure. The observed features are defined predomina…
Investigating the large deformation of the 5/2+ isomeric state in Zn73 : An indicator for triaxiality
Isotope shift of40,42,44,48Ca in the 4s2S1/2→ 4p2P3/2transition
We report on improved isotope shift measurements of the isotopes 40,42,44,48Ca in the 4s2S1/2→4p2P3/2 transition using collinear laser spectroscopy. Accurately known isotope shifts in the 4s2S1/2→4p2P1/2 (D1) transition were used to calibrate the ion beam energy with an uncertainty of ΔU ≈ ± 0.25 V. The accuracy in the D2 transition was improved by a factor of 5–10. A King-plot analysis of the two transitions revealed that the field shift factor in the D2 line is about 1.8(13)% larger than in the D1 transition which is ascribed to relativistic contributions of the 4p1/2 wave function.
First Glimpse of the N=82 Shell Closure below Z=50 from Masses of Neutron-Rich Cadmium Isotopes and Isomers
We probe the $N=82$ nuclear shell closure by mass measurements of neutron-rich cadmium isotopes with the ISOLTRAP spectrometer at ISOLDE-CERN. The new mass of $^{132}\mathrm{Cd}$ offers the first value of the $N=82$, two-neutron shell gap below $Z=50$ and confirms the phenomenon of mutually enhanced magicity at $^{132}\mathrm{Sn}$. Using the recently implemented phase-imaging ion-cyclotron-resonance method, the ordering of the low-lying isomers in $^{129}\mathrm{Cd}$ and their energies are determined. The new experimental findings are used to test large-scale shell-model, mean-field, and beyond-mean-field calculations, as well as the ab initio valence-space in-medium similarity renormalizat…
Highly charged ions, quantum-electrodynamics, and the electron mass
Abstract High precision experiments on the magnetic moment of hydrogen-like ions confined in a Penning trap have provided the most stringent test of bound-state quantum-electrodynamic calculations. Experiments have been performed on single C 5+ and O 7+ ions. These experiments are briefly reviewed and prospects for future improvements and extension to other systems are discussed.
Shape staggering of midshell mercury isotopes from in-source laser spectroscopy compared with density-functional-theory and Monte Carlo shell-model calculations
Neutron-deficient Hg177-185 isotopes were studied using in-source laser resonance-ionization spectroscopy at the CERN-ISOLDE radioactive ion-beam facility in an experiment combining different detection methods tailored to the studied isotopes. These include either α-decay tagging or multireflection time-of-flight gating for isotope identification. The endpoint of the odd-even nuclear shape staggering in mercury was observed directly by measuring for the first time the isotope shifts and hyperfine structures of Hg177-180. Changes in the mean-square charge radii for all mentioned isotopes, magnetic dipole, and electric quadrupole moments of the odd-A isotopes and arguments in favor of I=7/2 s…
Suppression of Penning discharges between the KATRIN spectrometers
The KArlsruhe TRItium Neutrino experiment (KATRIN) aims to determine the effective electron (anti)neutrino mass with a sensitivity of $0.2\textrm{ eV/c}^2$ (90$\%$ C.L.) by precisely measuring the endpoint region of the tritium $\beta$-decay spectrum. It uses a tandem of electrostatic spectrometers working as MAC-E (magnetic adiabatic collimation combined with an electrostatic) filters. In the space between the pre-spectrometer and the main spectrometer, an unavoidable Penning trap is created when the superconducting magnet between the two spectrometers, biased at their respective nominal potentials, is energized. The electrons accumulated in this trap can lead to discharges, which create a…
Buffer-gas-free mass-selective ion centering in Penning traps by simultaneous dipolar excitation of magnetron motion and quadrupolar excitation for interconversion between magnetron and cyclotron motion
A new excitation scheme of the radial ion-motional modes is introduced for Penning-trap ion-cyclotron-resonance experiments. By simultaneous dipolar excitation of the magnetron motion and resonant quadrupolar excitation for the conversion between magnetron motion and cyclotron motion, a mass-selective recentering of the ions of interest is performed while all other (contaminant) ions are ejected from the trap. This new technique does not rely on the application of a buffer gas as presently used [G. Savard, St. Becker, G. Bollen, H.-J. Kluge, R.B. Moore, Th. Otto, L Schweikhard, H. Stolzenberg, U. Wiess, Physics Letters A 158 (1991) 247] and will thus prevent charge-exchange reactions and da…
Measurement and simulation of the pressure ratio between the two traps of double Penning trap mass spectrometers
Penning traps are ideal tools to perform high-precision mass measurements. For this purpose the cyclotron frequency of the stored charged particles is measured. In case of on-line mass measurements of short-lived nuclides produced at radioactive beam facilities the ions get in general first prepared and cooled by buffer-gas collisions in a preparation trap to reduce their motional amplitudes and are then transported to a precision trap for the cyclotron frequency determination. In modern Penning trap mass spectrometers both traps are placed in the homogeneous region of one superconducting magnet to optimize the transport efficiency. Because the gas pressure inside the precision trap has to …
High-accuracy Penning trap mass measurements with stored and cooled exotic ions
The technique of Penning trap mass spectrometry is briefly reviewed particularly in view of precision experiments on unstable nuclei, performed at different facilities worldwide. Selected examples of recent results emphasize the importance of high-precision mass measurements in various fields of physics.
Spins and magnetic moments ofMn58,60,62,64ground states and isomers
The odd-odd $^{54,56,58,60,62,64}\mathrm{Mn}$ isotopes ($Z=25$) were studied using bunched-beam collinear laser spectroscopy at ISOLDE, CERN. From the measured hyperfine spectra the spins and magnetic moments of Mn isotopes up to $N=39$ were extracted. The previous tentative ground state spin assignments of $^{58,60,62,64}\mathrm{Mn}$ are now firmly determined to be $I=1$ along with an $I=4$ assignment for the isomeric states in $^{58,60,62}\mathrm{Mn}$. The $I=1$ magnetic moments show a decreasing trend with increasing neutron number while the $I=4$ moments remain quite constant between $N=33$ and $N=37$. The results are compared to large-scale shell-model calculations using the GXPF1A and…
Production of negative osmium ions by laser desorption and ionization.
The interest to produce negative osmium ions is manifold in the realm of high-accuracy ion trap experiments: high-resolution nearly Doppler-free laser spectroscopy, antihydrogen formation in its ground state, and contributions to neutrino mass spectrometry. Production of these ions is generally accomplished by sputtering an Os sample with Cs(+) ions at tens of keV. Though this is a well-established method commonly used at accelerators, these kind of sources are quite demanding and tricky to operate. Therefore, the development of a more straightforward and cost effective production scheme will be of benefit for ion trap and other experiments. Such a scheme makes use of desorption and ionizat…
Resonant enhancement of neutrinoless double-electron capture in 152Gd.
In the search for the nuclide with the largest probability for neutrinoless double-electron capture, we have determined the ${Q}_{ϵϵ}$ value between the ground states of $^{152}\mathrm{Gd}$ and $^{152}\mathrm{Sm}$ by Penning-trap mass-ratio measurements. The new ${Q}_{ϵϵ}$ value of 55.70(18) keV results in a half-life of ${10}^{26}\text{ }\text{ }\mathrm{yr}$ for a 1 eV neutrino mass. With this smallest half-life among known $0\ensuremath{\nu}ϵϵ$ transitions, $^{152}\mathrm{Gd}$ is a promising candidate for the search for neutrinoless double-electron capture.
Time-separated oscillatory fields for high-precision mass measurements on short-lived Al and Ca nuclides
High-precision Penning trap mass measurements on the stable nuclide 27Al as well as on the short-lived radionuclides 26Al and 38,39Ca have been performed by use of radiofrequency excitation with time-separated oscillatory fields, i.e. Ramsey's method, as recently introduced for the excitation of the ion motion in a Penning trap, was applied. A comparison with the conventional method of a single continuous excitation demonstrates its advantage of up to ten times shorter measurements. The new mass values of 26,27Al clarify conflicting data in this specific mass region. In addition, the resulting mass values of the superallowed beta-emitter 38Ca as well as of the groundstate of the beta-emitte…
Laser Spectroscopy of Neutron-Rich Tin Isotopes: A Discontinuity in Charge Radii across the N=82 Shell Closure
Physical review letters 122(19), 192502 (2019). doi:10.1103/PhysRevLett.122.192502
TRIGA-SPEC: A setup for mass spectrometry and laser spectroscopy at the research reactor TRIGA Mainz
The research reactor TRIGA Mainz is an ideal facility to provide neutron-rich nuclides with production rates sufficiently large for mass spectrometric and laser spectroscopic studies. Within the TRIGA-SPEC project, a Penning trap as well as a beam line for collinear laser spectroscopy are being installed. Several new developments will ensure high sensitivity of the trap setup enabling mass measurements even on a single ion. Besides neutron-rich fission products produced in the reactor, also heavy nuclides such as 235-U or 252-Cf can be investigated for the first time with an off-line ion source. The data provided by the mass measurements will be of interest for astrophysical calculations on…
g Factor of Lithiumlike Silicon: New Challenge to Bound-State QED
The recently established agreement between experiment and theory for the $g$ factors of lithiumlike silicon and calcium ions manifests the most stringent test of the many-electron bound-state quantum electrodynamics (QED) effects in the presence of a magnetic field. In this Letter, we present a significant simultaneous improvement of both theoretical $g_\text{th} = 2.000\,889\,894\,4\,(34)$ and experimental $g_\text{exp} = 2.000\,889\,888\,45\,(14)$ values of the $g$ factor of lithiumlike silicon $^{28}$Si$^{11+}$. The theoretical precision now is limited by the many-electron two-loop contributions of the bound-state QED. The experimental value is accurate enough to test these contributions…
Measurements of ground-state properties for nuclear structure studies by precision mass and laser spectroscopy
Atomic physics techniques like Penning-trap and storage-ring mass spectrometry as well as laser spectroscopy have provided sensitive high-precision tools for detailed studies of nuclear ground-state properties far from the valley of β-stability. Mass, moment and nuclear charge radius measurements in long isotopic and isotonic chains have allowed extraction of nuclear structure information such as halos, shell and subshell closures, the onset of deformation, and the coexistence of nuclear shapes at nearly degenerate energies. This review covers experimental precision techniques to study nuclear ground-state properties and some of the most recent results for nuclear structure studies.
First transmission of electrons and ions through the KATRIN beamline
The Karlsruhe Tritium Neutrino (KATRIN) experiment is a large-scale effort to probe the absolute neutrino mass scale with a sensitivity of 0.2 eV (90% confidence level), via a precise measurement of the endpoint spectrum of tritium β-decay. This work documents several KATRIN commissioning milestones: the complete assembly of the experimental beamline, the successful transmission of electrons from three sources through the beamline to the primary detector, and tests of ion transport and retention. In the First Light commissioning campaign of autumn 2016, photoelectrons were generated at the rear wall and ions were created by a dedicated ion source attached to the rear section; in July 2017, …
Nuclear ground-state spins and magnetic moments ofMg27,Mg29, andMg31
The ground-state spins and magnetic moments of neutron-rich {sup 27}Mg, {sup 29}Mg, and {sup 31}Mg were measured for the first time with laser and {beta}-NMR spectroscopy at ISOLDE/CERN. The hyperfine structure of {sup 27}Mg--observed in fluorescence--confirms previous assignments of the spin I=1/2 and reveals the magnetic moment {mu}{sub I}({sup 27}Mg)=-0.4107(15){mu}{sub N}. The hyperfine structure and nuclear magnetic resonance of optically polarized {sup 29}Mg--observed in the asymmetry of its {beta} decay after implantation in a cubic crystal--give I=3/2 and {mu}{sub I}({sup 29}Mg)=+0.9780(6){mu}{sub N}. For {sup 31}Mg they yield together I=1/2 and {mu}{sub I}({sup 31}Mg)=-0.88355(15){…
Isotope shift measurements in the 2s1/2→ 2p3/2transition of Be+and extraction of the nuclear charge radii for7, 10, 11Be
International audience; shift measurements in the 2s 1/2 → 2p 3/2 transition of Be + and extraction of the nuclear charge radii for 7, 10, 11 Be Abstract. We have performed isotope shift measurements in the 2s 1/2 → 2p 3/2 transition of Be + ions using advanced collinear laser spectroscopy with two counterpropagating laser beams. Measurements involving a frequency comb for laser stabilization and absolute frequency determination allowed us to determine the isotope shifts with an accuracy of 2 MHz. From the isotope shifts between 9 Be and 7, 10, 11 Be, high-accuracy mass shift calculations and the charge radius of the reference isotope 9 Be we determined nuclear charge radii for the isotopes…
Ground-state electromagnetic moments of calcium isotopes
Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UAM
From Calcium to Cadmium: Testing the Pairing Functional through Charge Radii Measurements of Cd100−130
Differences in mean-square nuclear charge radii of $^{100--130}\mathrm{Cd}$ are extracted from high-resolution collinear laser spectroscopy of the $5s\text{ }{^{2}S}_{1/2}\ensuremath{\rightarrow}5p\text{ }{^{2}P}_{3/2}$ transition of the ion and from the $5s5p\text{ }{^{3}P}_{2}\ensuremath{\rightarrow}5s6s\text{ }{^{3}S}_{1}$ transition in atomic Cd. The radii show a smooth parabolic behavior on top of a linear trend and a regular odd-even staggering across the almost complete $sdgh$ shell. They serve as a first test for a recently established new Fayans functional and show a remarkably good agreement in the trend as well as in the total nuclear charge radius.
Laser desorption/ionization cluster studies for calibration in mass spectrometry
Precise mass calibration is mandatory in many fields of mass spectrometry. We have performed laser desorption/ionization cluster studies with a MALDI-TOF mass spectrometer on gold and fullerene targets to produce atomic clusters. These investigations demonstrate that clusters are ideally suited for this purpose. Pulsed N 2 -laser and Nd:YAG-laser ablation was used to produce positively as well as negatively charged clusters. Earlier observations of dianionic metal clusters are confirmed. First results from the tandem Penning trap mass spectrometer ISOLTRAP using carbon clusters as mass references show how carbon clusters can be applied to precision mass spectrometry by providing absolute ma…
TRIGA-SPEC: the prototype of MATS and LaSpec
Investigation of short-lived nuclei is a challenging task that MATS and LaSpec will handle at the low energy branch of Super-FRS at FAIR. The groundwork for those experiments is laid-out already today at the TRIGA-SPEC facility as a powerful development platform located at the research reactor TRIGA Mainz. The latest status, new developments and first results of commissioning runs are presented here.
Double-trap measurement of the proton magnetic moment at 0.3 parts per billion precision
Precise knowledge of the fundamental properties of the proton is essential for our understanding of atomic structure as well as for precise tests of fundamental symmetries. We report on a direct high-precision measurement of the magnetic moment μp of the proton in units of the nuclear magneton μN. The result, μp = 2.79284734462 (±0.00000000082) μN, has a fractional precision of 0.3 parts per billion, improves the previous best measurement by a factor of 11, and is consistent with the currently accepted value. This was achieved with the use of an optimized double–Penning trap technique. Provided a similar measurement of the antiproton magnetic moment can be performed, this result will enable…
Peak shape for a quadrupole mass spectrometer: comparison of computer simulation and experiment
Abstract Computer simulations of ion trajectories have been used to evaluate the performance of a quadrupole mass spectrometer. Consideration has been given to realistic fields modeled on a commercial system as well as experimental distributions with respect to ion entry position, axial and radial velocity and relative phase of the quadrupole field. Determination of the mass filter acceptance-area as a function of the mass setting yields mass peak shapes with a dynamic range of more than seven orders of magnitude and thus provides estimates for abundance sensitivity. Results from these simulations are found to give excellent agreement with experimental measurements for different elements in…
Direct mass measurements above uranium bridge the gap to the island of stability
The mass of an atom incorporates all its constituents and their interactions. The difference between the mass of an atom and the sum of its building blocks (the binding energy) is a manifestation of Einstein's famous relation E = mc(2). The binding energy determines the energy available for nuclear reactions and decays (and thus the creation of elements by stellar nucleosynthesis), and holds the key to the fundamental question of how heavy the elements can be. Superheavy elements have been observed in challenging production experiments, but our present knowledge of the binding energy of these nuclides is based only on the detection of their decay products. The reconstruction from extended d…
Towards an Improved Measurement of the Proton Magnetic Moment
The BASE collaboration performed the most precise measurement of the proton magnetic moment. By applying the so-called double Penning-trap method with a single proton a fractional precision of 3.3 parts-per-billion was reached. This article describes the primary limitations of the last measurement and discusses improvements to reach the sub-parts-per-billion level.
Approaching theN=82shell closure with mass measurements of Ag and Cd isotopes
Mass measurements of neutron-rich Cd and Ag isotopes were performed with the Penning trap mass spectrometer ISOLTRAP. The masses of ${}^{112,114\ensuremath{-}124}$Ag and ${}^{114,120,122\ensuremath{-}124,126,128}$Cd, determined with relative uncertainties between $2\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}8}$ and $2\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}7}$, resulted in significant corrections and improvements of the mass surface. In particular, the mass of $^{124}\mathrm{Ag}$ was previously unknown. In addition, other masses that had to be inferred from $Q$ values of nuclear decays and reactions have now been measured directly. The analysis includes various mass…
High-resolution laser spectroscopy of Al27-32
Hyperfine spectra of Al27-32 (Z=13) have been measured at the ISOLDE-CERN facility via collinear laser spectroscopy using the 3s23p2P3/2o→3s24s2S1/2 atomic transition. For the first time, mean-square charge radii of radioactive aluminum isotopes have been determined alongside the previously unknown magnetic dipole moment of Al29 and electric quadrupole moments of Al29,30. A potentially reduced charge radius at N=19 may suggest an effect of the N=20 shell closure, which is visible in the Al chain, contrary to other isotopic chains in the sd shell. The experimental results are compared with theoretical calculations in the framework of the valence-space in-medium similarity renormalization gro…
g-factor measurement of hydrogenlike28Si13+as a challenge to QED calculations
Using a phase-detection method to determine the cyclotron frequency of a single trapped ion in a Penning trap allowed us to perform a measurement of the $g$ factor of the bound electron in hydrogenlike ${}^{28}$Si${}^{13+}$ with a statistical uncertainty of $4\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}11}$. Furthermore, we reevaluated the image-charge shift as the main source of uncertainty. Our result challenges bound-state quantum-electrodynamical calculations by probing two-loop contributions of order (Z$\ensuremath{\alpha}$)${}^{6}$ and paves the way towards a more precise determination of fundamental constants as the electron mass.
Calibration of high voltages at the ppm level by the difference of $^{83\mathrm{m}}$Kr conversion electron lines at the KATRIN experiment
The neutrino mass experiment KATRIN requires a stability of 3 ppm for the retarding potential at − 18.6 kV of the main spectrometer. To monitor the stability, two custom-made ultra-precise high-voltage dividers were developed and built in cooperation with the German national metrology institute Physikalisch-Technische Bundesanstalt (PTB). Until now, regular absolute calibration of the voltage dividers required bringing the equipment to the specialised metrology laboratory. Here we present a new method based on measuring the energy difference of two [superscript 83m]Kr conversion electron lines with the KATRIN setup, which was demonstrated during KATRIN’s commissioning measurements in July 2…
Change in structure between the $I = 1/2$ states in $^{181}$Tl and $^{177,179}$Au
Abstract The first accurate measurements of the α-decay branching ratio and half-life of the I π = 1 / 2 + ground state in 181Tl have been made, along with the first determination of the magnetic moments and I = 1 / 2 spin assignments of the ground states in 177,179Au. The results are discussed within the complementary systematics of the reduced α-decay widths and nuclear g factors of low-lying, I π = 1 / 2 + states in the neutron-deficient lead region. The findings shed light on the unexpected hindrance of the 1 / 2 + → 1 / 2 + , 181Tl → g 177 Aug α decay, which is explained by a mixing of π 3 s 1 / 2 and π 2 d 3 / 2 configurations in 177Aug, whilst 181Tlg remains a near-pure π 3 s 1 / 2 .…
The elliptical Penning trap: Experimental investigations and simulations
Abstract The application of an additional azimuthal quadrupolar electrostatic field to a Penning trap leads to a field configuration referred to as an elliptical Penning trap. The resulting changes of the radial ion motions have been investigated experimentally and by use of simulations. The eigenfrequencies, i.e., the magnetron frequency ω ˜ − and the reduced cyclotron frequency ω ˜ + , are found to be shifted with respect to those of the standard Penning trap ω − , ω + , respectively. As the shift of the magnetron frequency ω ˜ − is larger than that of the reduced cyclotron frequency ω ˜ + their sum ω ˜ + + ω ˜ − is also a function of the ellipticity and no longer equal to the cyclotron f…
Measurement of ultra-low heating rates of a single antiproton in a cryogenic Penning trap
Physical review letters 122(4), 043201 (2019). doi:10.1103/PhysRevLett.122.043201
Electrong-factor determinations in Penning traps
The magnetic moment of the electron, expressed by the g-factor in units of the Bohr magneton, is a key quantity in the theory of quantum electrodynamics (QED). Experiments using single particles confined in Penning traps have provided very precise values of the g-factor for the free electron as well as the electron bound in hydrogen-like ions. In this paper the status of these experiments is reviewed. The results allow testing calculations of higher order Feynman diagrams. Comparison of experimental and theoretical results for free and bound particles show no discrepancy within the limits of error, thus representing to date the most sensitive test of QED. Moreover, the g-factor provides a u…
The Revised SI: Fundamental Constants, Basic Physics and Units
Isotope shifts and hyperfine structure in the $\mathsf{ 3d ^2D_J \rightarrow 4p ^2P_J}$ transitions in calcium II
The isotope shift and hyperfine structure in the three \(\) - transitions in Ca II have been studied by fast ion beam collinear laser spectroscopy for all stable Ca isotopes. The metastable 3d states were populated within the surface ionization source of a mass separator with a probability of about 0.1%. After resonant excitation to the 4p levels with diode laser light around 850 nm the uv photons from the \(\) transitions to the ground state were used for detection. Hyperfine structure parameters A and B for the odd isotope 43Ca, as evaluated from the splittings observed, agree well with theoretical predictions from relativistic many-body perturbation theory. Field shift constants \(\) and…
Phase-Imaging Ion-Cyclotron-Resonance Measurements for Short-Lived Nuclides
A novel approach based on the projection of the Penning-trap ion motion onto a position-sensitive detector opens the door to very accurate mass measurements on the ppb level even for short-lived nuclides with half-lives well below a second. In addition to the accuracy boost, the new method provides a superior resolving power by which low-lying isomeric states with excitation energy on the 10-keV level can be easily separated from the ground state. A measurement of the mass difference of ^{130}Xe and ^{129}Xe has demonstrated the great potential of the new approach.
Trapped charged particles and fundamental interactions
Low-Energy Precision Tests of Electroweak Theory.- Principles of Ion Traps.- Simulations for Ion Traps Methods and Numerical Implementation.- Simulations for Ion Traps Buffer Gas Cooling.- Highly-charged ions and high-resolution mass spectrometry in a Penning trap.- Fundamental tests with trapped antiprotons.
Quadrupole moments of odd-A 53−63Mn: Onset of collectivity towards N=40
Physics letters / B 760, 387 - 392 (2016). doi:10.1016/j.physletb.2016.07.016
Spectroscopy of the long-lived excited state in the neutron-deficient nuclides Po195,197,199 by precision mass measurements
Direct mass measurements of the low-spin 3/2(-) and high-spin 13/2(+) states in the neutron-deficient isotopes Po-195 and Po-197 were performed with the Penning-trap mass spectrometer ISOLTRAP at ISOLDE-CERN. These measurements allow the determination of the excitation energy of the isomeric state arising from the nu i(13/2) orbital in Po-195,Po-197. Additionally, the excitation energy of isomeric states of lead, radon, and radium isotopes in this region were obtained from alpha-decay chains. These excitation energies complete the knowledge of the energy systematics in the region and confirm that the 13/2(+) states remain isomeric, independent of the number of valence neutrons.
Sympathetic cooling of protons and antiprotons with a common endcap Penning trap.
We present an experiment to sympathetically cool protons and antiprotons in a Penning trap by resonantly coupling the particles to laser cooled beryllium ions using a common endcap technique. Our analysis shows that preparation of (anti)protons at mK temperatures on timescales of tens of seconds is feasible. Successful implementation of the technique will have immediate and significant impact on high-precision comparisons of the fundamental properties of protons and antiprotons. This in turn will provide some of the most stringent tests of the fundamental symmetries of the Standard Model.
Neutrinoless Double-Electron Capture
Double-beta processes play a key role in the exploration of neutrino and weak interaction properties, and in the searches for effects beyond the Standard Model. During the last half century many attempts were undertaken to search for double-beta decay with emission of two electrons, especially for its neutrinoless mode ($0\nu2\beta^-$), the latter being still not observed. Double-electron capture (2EC) was not in focus so far because of its in general lower transition probability. However, the rate of neutrinoless double-electron capture ($0\nu2$EC) can experience a resonance enhancement by many orders of magnitude in case the initial and final states are energetically degenerate. In the re…
High-precision Penning-trap mass measurements of heavy xenon isotopes for nuclear structure studies
With the double Penning-trap mass spectrometer ISOLTRAP at ISOLDE/CERN the masses of the neutron-rich isotopes $^{136\ensuremath{-}146}\mathrm{Xe}$ were measured with a relative uncertainty of the order of ${10}^{\ensuremath{-}8}$ to ${10}^{\ensuremath{-}7}$. In particular, the masses of $^{144\ensuremath{-}146}\mathrm{Xe}$ were measured for the first time. These new mass values allow one to extend calculations of the mass surface in this region. Proton-Neutron interaction strength, obtained from double differences of binding energies, relate to subtle structural effects, such as the onset of octupole correlations, the growth of collectivity, and its relation to the underlying shell model l…
Off-line commissioning of the ISOLDE cooler
International audience; Among the multiple progresses in radioactive ion beam (RIB) manipulation for physics experiments, the beam cooling and bunching in gas-filled RF traps has become a widely used technique. It is particularly well adapted to precision experiments, such as Penning trap mass spectrometry or collinear laser spectroscopy. At ISOLDE, an rf quadrupole cooler and ion buncher (RFQCB) has been designed and developed to deliver radioactive beams of improved quality among most of the on-line experiments. The results of the first off-line tests have shown that high transmission efficiencies could be achieved with different RIBs of alkali metals, as it was expected. During the later…
Selective ultra trace isotope determination in environmental and biomedical studies by high-resolution resonance ionization mass spectrometry
The precise determination of relative abundances of ultra trace isotopes in the range below 10 -9 is of importance for a wide spectrum of applications in fields like environmental protection, cosmo-chemistry, bio-medical tracer studies or geological and geo-chronological investigations. The necessary high isotopic selectivity, rather complete isobaric suppression and good overall efficiency for these investigations is provided by high-resolution resonance ionization mass spectrometry. Multi-step continuous wave laser excitation and ionization using diode lasers at a compact quadrupole mass spectrometer has been optimized to become a powerful and reliable experimental method, which is just b…
A Novel Penning‐Trap Design for the High‐Precision Measurement of the 3 He 2 + Nuclear Magnetic Moment
Observation of individual spin quantum transitions of a single antiproton
We report on the detection of individual spin quantum transitions of a single trapped antiproton in a Penning trap. The spin-state determination, which is based on the unambiguous detection of axial frequency shifts in presence of a strong magnetic bottle, reaches a fidelity of 92.1% . Spin-state initialization with >99.9% fidelity and an average initialization time of 24 min are demonstrated. This is a major step towards an antiproton magnetic moment measurement with a relative uncertainty on the part-per-billion level. We report on the detection of individual spin quantum transitions of a single trapped antiproton in a Penning trap. The spin-state determination, which is based on the unam…
Cluster calibration in mass spectrometry: laser desorption/ionization studies of atomic clusters and an application in precision mass spectrometry.
For accurate mass measurements and identification of atomic and molecular species precise mass calibration is mandatory. Recent studies with laser desorption/ionization and time-of-flight analysis of cluster ion production by use of fullerene and gold targets demonstrate the generation of atomic clusters for calibration purposes. Atomic ion results from the Penning trap mass spectrometer ISOLTRAP, in which a carbon cluster ion source has recently been installed, are presented as an application in the field of precision mass spectrometry.
High-Precision Measurements of the Bound Electron’s Magnetic Moment
Highly charged ions represent environments that allow to study precisely one or more bound electrons subjected to unsurpassed electromagnetic fields. Under such conditions, the magnetic moment (g-factor) of a bound electron changes significantly, to a large extent due to contributions from quantum electrodynamics. We present three Penning-trap experiments, which allow to measure magnetic moments with ppb precision and better, serving as stringent tests of corresponding calculations, and also yielding access to fundamental quantities like the fine structure constant α and the atomic mass of the electron. Additionally, the bound electrons can be used as sensitive probes for properties of the …
The laser ion source and trap (LIST) – A highly selective ion source
A combined structure consisting of a laser ion source and a linear Paul trap (LIST) has been designed to produce radioactive ion beams of high purity and optimal temporal and spacial brilliance at on-line isotope separator (ISOL) facilities. The functionality of the LIST was experimentally demonstrated in off-line tests using the RISIKO off-line mass separator together with an all solid state Ti:sapphire laser system at the University of Mainz. Two different ion trap designs were tested extracting the performance of these devices regarding ionization efficiency and selectivity as well as time structure and transverse emittance of the produced ion beam. The results of these measurements are …
Highly sensitive superconducting circuits at ∼700 kHz with tunable quality factors for image-current detection of single trapped antiprotons
We developed highly-sensitive image-current detection systems based on superconducting toroidal coils and ultra-low noise amplifiers for non-destructive measurements of the axial frequencies (550$\sim$800$\,$kHz) of single antiprotons stored in a cryogenic multi-Penning-trap system. The unloaded superconducting tuned circuits show quality factors of up to 500$\,$000, which corresponds to a factor of 10 improvement compared to our previously used solenoidal designs. Connected to ultra-low noise amplifiers and the trap system, signal-to-noise-ratios of 30$\,$dB at quality factors of > 20$\,$000 are achieved. In addition, we have developed a superconducting switch which allows continuous tu…
Magnetic and quadrupole moments of neutron deficient 58-62Cu isotopes
Abstract This paper reports on the ground state nuclear moments measured in 58–62Cu using collinear laser spectroscopy at the ISOLDE facility. The quadrupole moments for 58–60Cu have been measured for the first time as Q ( Cu 58 ) = − 15 ( 3 ) efm 2 , Q ( Cu 59 ) = − 19.3 ( 19 ) efm 2 , Q ( Cu 60 ) = + 11.6 ( 12 ) efm 2 and with higher precision for 61,62Cu as Q ( Cu 61 ) = − 21.1 ( 10 ) efm 2 , Q ( Cu 62 ) = − 2.2 ( 4 ) efm 2 . The magnetic moments of 58,59Cu are measured with a higher precision as μ ( Cu 58 ) = + 0.570 ( 2 ) μ N and μ ( Cu 59 ) = + 1.8910 ( 9 ) μ N . The experimental nuclear moments are compared to large-scale shell-model calculations with the GXPF1 and GXPF1A effective i…
The nuclear magnetic moment of 208Bi and its relevance for a test of bound-state strong-field QED
Physics letters / B 779, 324 - 330 (2018). doi:10.1016/j.physletb.2018.02.024
Isotope shifts and hyperfine structure in the transitions of gadolinium
High-resolution resonance ionization mass spectrometry has been used to measure isotope shifts and hyperfine structure in all (J = 2-6) and the transitions of gadolinium (Gd I). Gadolinium atoms in an atomic beam were excited with a tunable single-frequency laser in the wavelength range of 422-429 nm. Resonant excitation was followed by photoionization with the 363.8 nm line of an argon ion laser and resulting ions were mass separated and detected with a quadrupole mass spectrometer. Isotope shifts for all stable gadolinium isotopes in these transitions have been measured for the first time. Additionally, the hyperfine structure constants of the upper states have been derived for the isotop…
High-precision masses of neutron-deficient rubidium isotopes using a Penning trap mass spectrometer
The atomic masses of the neutron-deficient radioactive rubidium isotopes $^{74-77,79,80,83}$Rb have been measured with the Penning trap mass spectrometer ISOLTRAP. Using the time-of-flight cyclotron resonance technique, relative mass uncertainties ranging from $1.6 \times 10^{-8}$ to $5.6 \times 10^{-8}$ were achieved. In all cases, the mass precision was significantly improved as compared with the prior Atomic-Mass Evaluation; no significant deviations from the literature values were observed. The exotic nuclide $^{74}$Rb with a half-life of only 65 ms, is the shortest-lived nuclide on which a high-precision mass measurement in a Penning trap has been carried out. The significance of these…
Constraints on the Coupling between Axionlike Dark Matter and Photons Using an Antiproton Superconducting Tuned Detection Circuit in a Cryogenic Penning Trap
We constrain the coupling between axionlike particles (ALPs) and photons, measured with the superconducting resonant detection circuit of a cryogenic Penning trap. By searching the noise spectrum of our fixed-frequency resonant circuit for peaks caused by dark matter ALPs converting into photons in the strong magnetic field of the Penning-trap magnet, we are able to constrain the coupling of ALPs with masses around $2.7906-2.7914\,\textrm{neV/c}^2$ to $g_{a\gamma}< 1 \times 10^{-11}\,\textrm{GeV}^{-1}$. This is more than one order of magnitude lower than the best laboratory haloscope and approximately 5 times lower than the CERN axion solar telescope (CAST), setting limits in a mass and cou…
Direct Measurement of the Mass Difference ofHo163andDy163Solves theQ-Value Puzzle for the Neutrino Mass Determination
The atomic mass difference of (163)Ho and (163)Dy has been directly measured with the Penning-trap mass spectrometer SHIPTRAP applying the novel phase-imaging ion-cyclotron-resonance technique. Our measurement has solved the long-standing problem of large discrepancies in the Q value of the electron capture in (163)Ho determined by different techniques. Our measured mass difference shifts the current Q value of 2555(16) eV evaluated in the Atomic Mass Evaluation 2012 [G. Audi et al., Chin. Phys. C 36, 1157 (2012)] by more than 7σ to 2833(30(stat))(15(sys)) eV/c(2). With the new mass difference it will be possible, e.g., to reach in the first phase of the ECHo experiment a statistical sensit…
Isotope dependence of the Zeeman effect in lithium-like calcium
The magnetic moment μ of a bound electron, generally expressed by the g-factor μ=−g μB s ħ−1 with μB the Bohr magneton and s the electron's spin, can be calculated by bound-state quantum electrodynamics (BS-QED) to very high precision. The recent ultra-precise experiment on hydrogen-like silicon determined this value to eleven significant digits, and thus allowed to rigorously probe the validity of BS-QED. Yet, the investigation of one of the most interesting contribution to the g-factor, the relativistic interaction between electron and nucleus, is limited by our knowledge of BS-QED effects. By comparing the g-factors of two isotopes, it is possible to cancel most of these contributions an…
Nuclear charge radii of potassium isotopes beyond N=28
We report on the measurement of optical isotope shifts for 38, 39, 42, 44, 46–51 K relative to 47 K from which changes in the nuclear mean square charge radii across the N = 28 shell closure are deduced. The investigation was carried out by bunched-beam collinear laser spectroscopy at the CERN-ISOLDE radioactive ion-beam facility. Mean square charge radii are now known from 37K to 51K, covering all ν f7/2-shell as well as all νp3/2-shell nuclei. These measurements, in conjunction with those of Ca, Cr, Mn and Fe, provide a first insight into the Z dependence of the evolution of nuclear size above the shell closure at N = 28
Recent Upgrades of the SHIPTRAP Setup: On the Finish Line Towards Direct Mass Spectroscopy of Superheavy Elements
With the Penning-trap mass spectrometer SHIPTRAP at GSI, Darmstadt, it is possible to investigate exotic nuclei in the region of the heaviest elements. Few years ago, challenging experiments led to the direct measurements of the masses of neutron-deficient isotopes with Z = 102,103 around N = 152. Thanks to recent advances in cooling and ion-manipulation techniques, a major technical upgrade of the setup has been recently accomplished to boost its efficiency. At present, the gap to reach more rare and shorter-lived species at the limits of the nuclear landscape has been narrowed. ispartof: pages:423-429 ispartof: Acta Physica Polonica B vol:48 issue:3 pages:423-429 ispartof: location:Zakopa…
Towards high-precision mass measurements on 74Rb for a test of the CVC hypothesis and the unitarity of the CKM matrix
At the highest possible precisions, atomic-mass measurements can be used to perform fundamental studies. Examples for such studies are a check of the conserved-vector-current (CVC) hypothesis and the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix, both postulates of the Standard Model. The comparative half-lives Ft of superallowed β decays constitute the nuclear-physics access to these tests. The Q value of the β decay of 74 Rb, one of the three experimentally accessible parameters that enter into the Ft values, has been measured with the ISOLTRAP experiment at ISOLDE/CERN. The ultimate mass precision requirement and the way to achieve it are outlined.
High-precision measurement of the proton's atomic mass
We report on the precise measurement of the atomic mass of a single proton with a purpose-built Penning-trap system. With a precision of 32 parts-per-trillion our result not only improves on the current CODATA literature value by a factor of three, but also disagrees with it at a level of about 3 standard deviations.
Changes in nuclear structure along the Mn isotopic chain studied via charge radii
The hyperfine spectra of $^{51,53-64}$Mn were measured in two experimental runs using collinear laser spectroscopy at ISOLDE, CERN. Laser spectroscopy was performed on the atomic $3d^5\ 4s^2\ ^{6}\text{S}_{5/2}\rightarrow 3d^5\ 4s4p\ ^{6}\text{P}_{3/2}$ and ionic $3d^5\ 4s\ ^{5}\text{S}_2 \rightarrow 3d^5\ 4p\ ^{5}\text{P}_3$ transitions, yielding two sets of isotope shifts. The mass and field shift factors for both transitions have been calculated in the multiconfiguration Dirac-Fock framework and were combined with a King plot analysis in order to obtain a consistent set of mean-square charge radii which, together with earlier work on neutron-deficient Mn, allow the study of nuclear struc…
Double-resonance measurements of isotope shifts and hyperfine structure in Gd I with hyperfine-state selection in an intermediate level
Isotope shifts and hyperfine structure have been measured in the 4f7 5d6s2 9D6 -- X9 D6 (;38 024. 9 cm-1) transition in atomic gadolinium using high- resolution resonance ionization mass spectroscopy. Excitation was performed as a resonance-enhanced two-photon transition with the 4f7 5d6s6p 9F7 state as an intermediate level. Selective population of hyperfine states in the first excitation step allowed assignment of all transitions in the complex hyperfine spectrum of the odd isotopes 155,157Gd and evaluation of the magnetic dipole and electric quadrupole hyperfine structure constants for the X 9D6 state. Measured values for the isotope shifts of all stable Gd isotopes have been used to der…
Ultratrace analysis of calcium with high isotopic selectivity by diodelaser resonance ionisation mass spectrometry
A resonance ionisation mass spectrometer for the ultratrace determination of calcium isotopes is presented. It achieves high overall efficiency, ultra-high isotopic abundance sensitivity of more than 1010 and complete suppression of isobars. The system can be used for isotope ratio studies on stable and long-lived trace isotopes with the final goal of radiodating via 41Ca-determination. For the different applications optical one-, two- or three-step resonance excitation and subsequent ionisation is applied using simple and inexpensive diodelasers. Additional mass analysis is accomplished in a commercial quadrupole mass spectrometer. The experimental set-up and first results on synthetical a…
Shape coexistence in Au 187 studied by laser spectroscopy
Hyperfine-structure parameters and isotope shift of the 9/2$^−$ isomeric state in $^{187}$Au relative to $^{197}$Au for the 267.6-nm atomic transition have been measured for the first time using the in-source resonance-ionization spectroscopy technique. The magnetic dipole moment and change in the mean-square charge radius for this 9/2$^−$ isomer have been deduced. The observed large isomer shift relative to the 1/2$^+$ ground state in $^{187}$Au confirms the occurrence of the shape coexistence in $^{187}$Au proposed earlier from the analysis of the nuclear spectroscopic data and particle plus triaxial rotor calculations. The analysis of the magnetic moment supports the previously proposed …
Probing the single-particle behavior above Sn132 via electromagnetic moments of Sb133,134 and N=82 isotones
Magnetic and quadrupole moments of the $7/{2}^{+}$ ground state in $^{133}\mathrm{Sb}$ and the $({7}^{\ensuremath{-}})$ isomer in $^{134}\mathrm{Sb}$ have been measured by collinear laser spectroscopy to investigate the single-particle behavior above the doubly magic nucleus $^{132}\mathrm{Sn}$. The comparison of experimental data of the $7/{2}^{+}$ states in $^{133}\mathrm{Sb}$ and neighboring $N=82$ isotones to shell-model calculations reveals the sensitivity of magnetic moments to the splitting of the spin-orbit partners $\ensuremath{\pi}0{g}_{9/2}$ and $\ensuremath{\pi}0{g}_{7/2}$ across the proton shell closure at $Z=50$. In contrast, quadrupole moments of the $N=82$ isotones are insen…
Nuclear moments and charge radii of argon isotopes between the neutron-shell closures and
We report the measurement of optical isotope shifts for 40−44 Ar relative to 38 Ar from which changes in the mean square nuclear charge radii across the 1f7/2 neutron shell are deduced. In addition, the hyperfine structure of 41 Ar and 43 Ar yields the spins, magnetic dipole and electric quadrupole moments, in particular the spin I = 5/2 for 43 Ar. The investigations were carried out by fast-beam collinear laser spectroscopy using highly sensitive detection based on optical pumping and state-selective collisional ionization. Mean square charge radii are now known from 32 Ar to 46 Ar, covering sd-shell as well as f7/2-shell nuclei. They are discussed in the framework of spherical SGII Skyrme…
Nuclear charge radii of 62−80Zn and their dependence on cross-shell proton excitations
Nuclear charge radii of 62−80Zn have been determined using collinear laser spectroscopy of bunched ion beams at CERN-ISOLDE. The subtle variations of observed charge radii, both within one isotope and along the full range of neutron numbers, are found to be well described in terms of the proton excitations across the Z=28 shell gap, as predicted by large-scale shell model calculations. It comprehensively explains the changes in isomer-to-ground state mean square charge radii of 69−79Zn, the inversion of the odd-even staggering around N=40 and the odd-even staggering systematics of the Zn charge radii. With two protons above Z=28, the observed charge radii of the Zn isotopic chain show a cum…
High-precision mass measurements for fundamental applications using highly-charged ions with SMILETRAP
The Penning trap mass spectrometer SMILETRAP takes advantage of highly-charged ions for high-accuracy mass measurements. In this paper recent mass measurements on Li and Ca ions are presented and their impact on fundamental applications discussed, especially the need for accurate mass values of hydrogen-like and lithium-like ions in the evaluation of the electron g-factor measurements in highly-charged ions is emphasized. Such experiments aim to test bound state quantum electrodynamics. Here the ionic mass is a key ingredient, which can be the limiting factor for the final precision.
Experimental determination of anIπ=2−ground state inCu72,74
This article reports on the ground-state spin and moments measured in $^{72,74}\mathrm{Cu}$ using collinear laser spectroscopy at the CERN On-Line Isotope Mass Separator (ISOLDE) facility. From the measured hyperfine coefficients, the nuclear observables $\ensuremath{\mu}$(${}^{72}\mathrm{Cu})=\ensuremath{-}1.3472(10){\ensuremath{\mu}}_{N}$, $\ensuremath{\mu}({}^{74}\mathrm{Cu})=\ensuremath{-}1.068(3){\ensuremath{\mu}}_{N}$, $Q({}^{72}\mathrm{Cu})=+8(2) {\mathrm{efm}}^{2}$, $Q({}^{74}\mathrm{Cu})=+26(3) {\mathrm{efm}}^{2}$, $I({}^{72}\mathrm{Cu})=2$, and $I({}^{74}\mathrm{Cu})=2$ have been determined. Through a comparison of the measured magnetic moments with different models, the negative …
Restoration of theN=82Shell Gap from Direct Mass Measurements ofSn132,134
A high-precision direct Penning trap mass measurement has revealed a 0.5-MeV deviation of the binding energy of (134)Sn from the currently accepted value. The corrected mass assignment of this neutron-rich nuclide restores the neutron-shell gap at N=82, previously considered to be a case of "shell quenching." In fact, the new shell gap value for the short-lived (132)Sn is larger than that of the doubly magic (48)Ca which is stable. The N=82 shell gap has considerable impact on fission recycling during the r process. More generally, the new finding has important consequences for microscopic mean-field theories which systematically deviate from the measured binding energies of closed-shell nu…
Mass spectrometry of atomic ions produced by in-trap decay of short-lived nuclides
The triple-trap mass spectrometer ISOLTRAP at ISOLDE/CERN has demonstrated the feasibility of mass spectrometry of in-trap-decay product ions. This novel technique gives access to radionuclides, which are not produced directly at ISOL-type radioactive ion beam facilities. As a proof of principle, the in-trap decay of $^{37}K^+$ has been investigated in a Penning trap filled with helium buffer gas. The half-life of the mother nuclide was confirmed and the recoiling $^{37}Ar^+$ daughter ion was contained within the trap. The ions of either the mother or the daughter nuclide were transferred to a precision Penning trap, where their mass was determined.
Proton-Neutron Pairing Correlations in the Self-Conjugate NucleusK38Probed via a Direct Measurement of the Isomer Shift
A marked difference in the nuclear charge radius was observed between the ${I}^{\ensuremath{\pi}}={3}^{+}$ ground state and the ${I}^{\ensuremath{\pi}}={0}^{+}$ isomer of $^{38}\mathrm{K}$ and is qualitatively explained using an intuitive picture of proton-neutron pairing. In a high-precision measurement of the isomer shift using bunched-beam collinear laser spectroscopy at CERN-ISOLDE, a change in the mean-square charge radius of $⟨{r}_{\mathrm{c}}^{2}⟩{(}^{38}{\mathrm{K}}^{m})\ensuremath{-}⟨{r}_{\mathrm{c}}^{2}⟩{(}^{38}{\mathrm{K}}^{g})=0.100(6)\text{ }\text{ }{\mathrm{fm}}^{2}$ was obtained. This is an order of magnitude more accurate than the result of a previous indirect measurement fr…
Properties and performance of a quadrupole mass filter used for resonance ionization mass spectrometry
Abstract The performance of commercial quadrupole mass spectrometers (QMS) with a number of imperfections, as compared to the ideal hyperbolic geometry, has been characterized using the computer simulation program simion 3d version 6.0. The analysis of simulated QMS geometries focuses primarily on modeling of the internal potential, the study of field deviations, and the influence of finite length on performance of the QMS. The computer simulation of ion trajectories in the QMS field yields predictions for optimum working conditions and provides estimates for the resolving power and the maximum isotopic abundance sensitivity. Experimental measurements that confirm these expectations are pre…
Direct high-precision measurement of the magnetic moment of the proton
The spin-magnetic moment of the proton $\mu_p$ is a fundamental property of this particle. So far $\mu_p$ has only been measured indirectly, analysing the spectrum of an atomic hydrogen maser in a magnetic field. Here, we report the direct high-precision measurement of the magnetic moment of a single proton using the double Penning-trap technique. We drive proton-spin quantum jumps by a magnetic radio-frequency field in a Penning trap with a homogeneous magnetic field. The induced spin-transitions are detected in a second trap with a strong superimposed magnetic inhomogeneity. This enables the measurement of the spin-flip probability as a function of the drive frequency. In each measurement…
New Mass Value forLi7
A high-accuracy mass measurement of $^{7}\mathrm{Li}$ was performed with the SMILETRAP Penning-trap mass spectrometer via a cyclotron frequency comparison of $^{7}\mathrm{Li}^{3+}$ and $\mathrm{H}_{2}{}^{+}$. A new atomic-mass value of $^{7}\mathrm{Li}$ has been determined to be $7.016\text{ }003\text{ }425\text{ }6(45)\text{ }\text{ }\mathrm{u}$ with a relative uncertainty of 0.63 ppb. It has uncovered a discrepancy as large as $14\ensuremath{\sigma}$ ($1.1\text{ }\text{ }\ensuremath{\mu}\mathrm{u}$) deviation relative to the literature value given in the Atomic-Mass Evaluation AME 2003. The importance of the improved and revised $^{7}\mathrm{Li}$ mass value, for calibration purposes in nu…
Damping effects in Penning trap mass spectrometry
Abstract Collisions of ions with residual gas atoms in a Penning trap can have a strong influence on the trajectories of the ions, depending on the atom species and the gas pressure. We report on investigations of damping effects in time-of-flight ion-cyclotron resonance mass spectrometry with the Penning trap mass spectrometers ISOLTRAP at ISOLDE/CERN (Geneva, Switzerland) and SHIPTRAP at GSI (Darmstadt, Germany). The work focuses on the interconversion of the magnetron and cyclotron motional modes, in particular the modification of the resonance profiles for quadrupolar excitation due to the damping effect of the residual gas. Extensive experiments have been performed with standard and Ra…
First online operation of TRIGA-TRAP
Abstract We report on the successful coupling of the Penning-trap mass spectrometry setup TRIGA-TRAP to the research reactor TRIGA Mainz. This offers the possibility to perform direct high-precision mass measurements of short-lived nuclei produced in neutron-induced fission of a 235 U target located near the reactor core. An aerosol-based gas-jet system is used for efficient transport of short-lived neutron-rich nuclei from the target chamber to a surface ion source. In conjunction with new ion optics and extended beam monitoring capabilities, the experimental setup has been fully commissioned. The design of the surface ion source, efficiency studies and first results are presented.
Superconducting Solenoid System with Adjustable Shielding Factor for Precision Measurements of the Properties of the Antiproton
Physical review applied 12(4), 044012 (2019). doi:10.1103/PhysRevApplied.12.044012
Position-sensitive ion detection in precision Penning trap mass spectrometry
A commercial, position-sensitive ion detector was used for the first time for the time-of-flight ion-cyclotron resonance detection technique in Penning trap mass spectrometry. In this work, the characteristics of the detector and its implementation in a Penning trap mass spectrometer will be presented. In addition, simulations and experimental studies concerning the observation of ions ejected from a Penning trap are described. This will allow for a precise monitoring of the state of ion motion in the trap.
Discovery of a long-lived low-lying isomeric state in Ga-80
Collinear laser spectroscopy was performed on the $^{80}\mathrm{Ga}$ isotope at ISOLDE, CERN. A low-lying isomeric state with a half-life much greater than $200$ ms was discovered. The nuclear spins and moments of the ground and isomeric states and the isomer shift are discussed. Probable spins and parities are assigned to both long-lived states (${3}^{\ensuremath{-}}$ and ${6}^{\ensuremath{-}}$) deduced from a comparison of the measured moments to shell-model calculations.
Trap-assisted decay spectroscopy with ISOLTRAP
Penning traps are excellent high-precision mass spectrometers for radionuclides. The high-resolving power used for cleaning isobaric and even isomeric contaminants can be exploited to improve decay-spectroscopy studies by delivering purified samples. An apparatus allowing trap-assisted decay spectroscopy has been coupled to the ISOLTRAP mass spectrometer at ISOLDE/CERN. The results from studies with stable and radioactive ions show that the setup can be used to perform decay studies on purified short-lived nuclides and to assist mass measurements. (C) 2012 Elsevier B.V. All rights reserved.
Precision Test of Many-Body QED in theBe+2pFine Structure Doublet Using Short-Lived Isotopes
Absolute transition frequencies of the $2s\text{ }{^{2}S}_{1/2}\ensuremath{\rightarrow}2p\text{ }{^{2}P}_{1/2,3/2}$ transitions in ${\mathrm{Be}}^{+}$ were measured for the isotopes $^{7,9--12}\mathrm{Be}$. The fine structure splitting of the $2p$ state and its isotope dependence are extracted and compared to results of ab initio calculations using explicitly correlated basis functions, including relativistic and quantum electrodynamics effects at the order of $m{\ensuremath{\alpha}}^{6}$ and $m{\ensuremath{\alpha}}^{7} \mathrm{ln} \ensuremath{\alpha}$. Accuracy has been improved in both the theory and experiment by 2 orders of magnitude, and good agreement is observed. This represents on…
High-resolution spectroscopy of gaseous $^\mathrm{83m}$Kr conversion electrons with the KATRIN experiment
In this work, we present the first spectroscopic measurements of conversion electrons originating from the decay of metastable gaseous $^\mathrm{83m}$Kr with the Karlsruhe Tritium Neutrino (KATRIN) experiment. The results obtained in this calibration measurement represent a major commissioning milestone for the upcoming direct neutrino mass measurement with KATRIN. The successful campaign demonstrates the functionalities of the full KATRIN beamline. The KATRIN main spectrometer's excellent energy resolution of ~ 1 eV made it possible to determine the narrow K-32 and L$_3$-32 conversion electron line widths with an unprecedented precision of ~ 1 %.
COLLINEAR LASER SPECTROSCOPY ON NEUTRON-RICH Mn ISOTOPES APPROACHING N = 40
We have studied 51,53−64Mn (Z=25) via bunched-beam collinear laser spectroscopy at ISOLDE, CERN. Model-independent information on the ground- and isomeric state spins, as well as their g-factors is obtained from the measured hyperfine spectra. The spins are essential for further establishing the level schemes in the mass region, while the g-factors reveal the changing ground state wave functions in the Mn chain approaching N=40. ispartof: pages:699-702 ispartof: Acta Physica Polonica B vol:46 issue:3 pages:699-702 ispartof: location:Zakopane, Poland status: published
Extending Penning trap mass measurements with SHIPTRAP to the heaviest elements
Penning-trap mass spectrometry of radionuclides provides accurate mass values and absolute binding energies. Such mass measurements are sensitive indicators of the nuclear structure evolution far away from stability. Recently, direct mass measurements have been extended to the heavy elements nobelium (Z=102) and lawrencium (Z=103) with the Penning-trap mass spectrometer SHIPTRAP. The results probe nuclear shell effects at N=152. New developments will pave the way to access even heavier nuclides.
Mass Measurements of Very Neutron-Deficient Mo and Tc Isotopes and Their Impact on rp Process Nucleosynthesis
The masses of ten proton-rich nuclides, including the N=Z+1 nuclides 85-Mo and 87-Tc, were measured with the Penning trap mass spectrometer SHIPTRAP. Compared to the Atomic Mass Evaluation 2003 a systematic shift of the mass surface by up to 1.6 MeV is observed causing significant abundance changes of the ashes of astrophysical X-ray bursts. Surprisingly low alpha-separation energies for neutron-deficient Mo and Tc are found, making the formation of a ZrNb cycle in the rp process possible. Such a cycle would impose an upper temperature limit for the synthesis of elements beyond Nb in the rp process.
Image charge shift in high-precision Penning traps
An ion in a Penning trap induces image charges on the surfaces of the trap electrodes. These induced image charges are used to detect the ion's motional frequencies, but they also create an additional electric field, which shifts the free-space cyclotron frequency typically at a relative level of several ${10}^{\ensuremath{-}11}$. In various high-precision Penning-trap experiments, systematics and their uncertainties are dominated by this so-called image charge shift (ICS). The ICS is investigated in this work by a finite-element simulation and by a dedicated measurement technique. Theoretical and experimental results are in excellent agreement. The measurement is using singly stored ions a…
Accurate mass measurements on neutron-deficient krypton isotopes
soumis à Nuclear Physics A; The masses of $^{72-78,80,82,86}$Kr were measured directly with the ISOLTRAP Penning trap mass spectrometer at ISOLDE/CERN. For all these nuclides, the measurements yielded mass uncertainties below 10 keV. The ISOLTRAP mass values for $^{72-75}$Kr outweighed previous results obtained by means of other techniques, and thus completely determine the new values in the Atomic-Mass Evaluation. Besides the interest of these masses for nuclear astrophysics, nuclear structure studies, and Standard Model tests, these results constitute a valuable and accurate input to improve mass models. In this paper, we present the mass measurements and discuss the mass evaluation for t…
The performance of the cryogenic buffer-gas stopping cell of SHIPTRAP
Direct high-precision mass spectrometry of the heaviest elements with SHIPTRAP, at GSI in Darmstadt, Germany, requires high efficiency to deal with the low production rates of such exotic nuclides. A second-generation gas stopping cell, operating at cryogenic temperatures, was developed and recently integrated into the relocated system to boost the overall efficiency. Offline measurements using 223Ra and 225Ac recoil-ion sources placed inside the gas volume were performed to characterize the gas stopping cell with respect to purity and extraction efficiency. In addition, a first online test using the fusion-evaporation residue 254No was performed, resulting in a combined stopping and extrac…
Mass measurements on stable nuclides in the rare-earth region with the Penning-trap mass spectrometer RIGA-TRAP
The masses of 15 stable nuclides in the rare-earth region have been measured with the Penning-trap mass spectrometer TRIGA-TRAP. This is the first series of absolute mass measurements linking these nuclides to the atomic-mass standard $^{12}\mathrm{C}$. Previously, nuclear reaction studies almost exclusively determined the literature values of these masses in the Atomic-Mass Evaluation. The TRIGA-TRAP results show deviations on the order of 3--4 standard deviations from the latest published values of the Atomic-Mass Evaluation 2003 for some cases. However, the binding-energy differences that are important for nuclear structure studies have been confirmed and improved. The new masses are dis…
Cu charge radii reveal a weak sub-shell effect at N=40
Collinear laser spectroscopy on Cu58-75 isotopes was performed at the CERN-ISOLDE radioactive ion beam facility. In this paper we report on the isotope shifts obtained from these measurements. State-of-the-art atomic physics calculations have been undertaken in order to determine the changes in mean-square charge radii δ(r2)A,A′ from the observed isotope shifts. A local minimum is observed in these radii differences at N=40, providing evidence for a weak N=40 sub-shell effect. However, comparison of δ(r2)A,A′ with a droplet model prediction including static deformation deduced from the spectroscopic quadrupole moments, points to the persistence of correlations at N=40.
Charge radii of neon isotopes across the sd neutron shell
We report on the changes in mean square charge radii of unstable neon nuclei relative to the stable Ne-20, based on the measurement of optical isotope shifts. The studies were carried out using collinear laser spectroscopy on a fast beam of neutral neon atoms. High sensitivity on short-lived isotopes was achieved thanks to nonoptical detection based on optical pumping and state-selective collisional ionization, which was complemented by an accurate determination of the beam kinetic energy. The new results provide information on the structural changes in the sequence of neon isotopes all across the neutron sd shell, ranging from the proton drip line nucleus and halo candidate Ne-17 up to the…
Sympathetic cooling of a trapped proton mediated by an LC circuit
Efficient cooling of trapped charged particles is essential to many fundamental physics experiments1,2, to high-precision metrology3,4 and to quantum technology5,6. Until now, sympathetic cooling has required close-range Coulomb interactions7,8, but there has been a sustained desire to bring laser-cooling techniques to particles in macroscopically separated traps5,9,10, extending quantum control techniques to previously inaccessible particles such as highly charged ions, molecular ions and antimatter. Here we demonstrate sympathetic cooling of a single proton using laser-cooled Be+ ions in spatially separated Penning traps. The traps are connected by a superconducting LC circuit that enable…
The KATRIN sensitivity to the neutrino mass and to right-handed currents in beta decay
The aim of the KArlsruhe TRItium Neutrino experiment KATRIN is the determination of the absolute neutrino mass scale down to 0.2 eV, with essentially smaller model dependence than from cosmology and neutrinoless double beta decay. For this purpose, the integral electron energy spectrum is measured close to the endpoint of molecular tritium beta decay. The endpoint, together with the neutrino mass, should be fitted from the KATRIN data as a free parameter. The right-handed couplings change the electron energy spectrum close to the endpoint, therefore they have some effect also to the precise neutrino mass determination. The statistical calculations show that, using the endpoint as a free par…
Direct Mapping of Nuclear Shell Effects in the Heaviest Elements
Quantum-mechanical shell effects are expected to strongly enhance nuclear binding on an "island of stability" of superheavy elements. The predicted center at proton number $Z=114,120$, or $126$ and neutron number $N=184$ has been substantiated by the recent synthesis of new elements up to $Z=118$. However the location of the center and the extension of the island of stability remain vague. High-precision mass spectrometry allows the direct measurement of nuclear binding energies and thus the determination of the strength of shell effects. Here, we present such measurements for nobelium and lawrencium isotopes, which also pin down the deformed shell gap at $N=152$.
High-accuracy mass measurements of neutron-rich Kr isotopes
The atomic masses of the neutron-rich krypton isotopes {sup 84,86-95}Kr have been determined with the tandem Penning trap mass spectrometer ISOLTRAP with uncertainties ranging from 20 to 220 ppb. The masses of the short-lived isotopes {sup 94}Kr and {sup 95}Kr were measured for the first time. The masses of the radioactive nuclides {sup 89}Kr and {sup 91}Kr disagree by 4 and 6 standard deviations, respectively, from the present Atomic-Mass Evaluation database. The resulting modification of the mass surface with respect to the two-neutron separation energies as well as implications for mass models and stellar nucleosynthesis are discussed.
Nuclear Charge Radii ofMg21−32
Charge radii of all magnesium isotopes in the sd shell have been measured, revealing evolution of the nuclear shape throughout two prominent regions of assumed deformation centered on (24)Mg and (32)Mg. A striking correspondence is found between the nuclear charge radius and the neutron shell structure. The importance of cluster configurations towards N=8 and collectivity near N=20 is discussed in the framework of the fermionic molecular dynamics model. These essential results have been made possible by the first application of laser-induced nuclear orientation for isotope shift measurements.
Nuclear spins, magnetic moments, and quadrupole moments of Cu isotopes fromN=28toN=46: Probes for core polarization effects
Measurements of the ground-state nuclear spins and magnetic and quadrupole moments of the copper isotopes from $^{61}\mathrm{Cu}$ up to $^{75}\mathrm{Cu}$ are reported. The experiments were performed at the CERN online isotope mass separator (ISOLDE) facility, using the technique of collinear laser spectroscopy. The trend in the magnetic moments between the $N=28$ and $N=50$ shell closures is reasonably reproduced by large-scale shell-model calculations starting from a $^{56}\mathrm{Ni}$ core. The quadrupole moments reveal a strong polarization of the underlying Ni core when the neutron shell is opened, which is, however, strongly reduced at $N=40$ due to the parity change between the $\mat…
The quality factor of a superconducting rf resonator in a magnetic field.
The quality factor of a superconducting NbTi resonator at 1.6 MHz in a magnetic field up to 1.2 T as well as its temperature dependence is investigated. A hysteresis effect in the superconducting surface resistance as a function of the magnetic field is observed. An unloaded Q-value of the resonator of 40,500 is achieved at 3.9 K. It is shown that this Q-value is limited by dielectric losses in the FORMVAR insulation of the coils wire. The details of the Q-value optimization are discussed. In the temperature dependence of the Q-value a steep decrease is observed above T approximately = 7.5 K. Finally, the implications of these measurements for real trap experiments are discussed in detail.
Targets on superhydrophobic surfaces for laser ablation ion sources
Target preparation techniques for a laser ablation ion source at the Penning-trap mass spectrometer TRIGA-TRAP have been investigated with regard to future experiments with actinides. To be able to perform mass measurements on these nuclides considering their limited availability, an efficient target preparation technique is mandatory. Here, we report on a new approach for target production using backings, which are pretreated in a way that a superhydrophobic surface is formed. This resulted in improved targets with a more homogeneous distribution of the target material compared to standard techniques with unmodified backings. It was demonstrated that the use of these new targets in a laser…
Charge radii and electromagnetic moments of At195–211
Hyperfine-structure parameters and isotope shifts of At195-211 have been measured for the first time at CERN-ISOLDE, using the in-source resonance-ionization spectroscopy method. The hyperfine structures of isotopes were recorded using a triad of experimental techniques for monitoring the photo-ion current. The Multi-Reflection Time-of-Flight Mass Spectrometer, in connection with a high-resolution electron multiplier, was used as an ion-counting setup for isotopes that either were affected by strong isobaric contamination or possessed a long half-life; the ISOLDE Faraday cups were used for cases with high-intensity beams; and the Windmill decay station was used for short-lived, predominantl…
Studies of narrow autoionizing resonances in gadolinium
The autoionization (AI) spectrum of gadolinium between the first and second limits has been investigated by triple-resonance excitation with high-resolution cw lasers. A large number of narrow AI resonances have been observed and assigned total angular momentum J values. The resonances are further divided into members of AI Rydberg series converging to the second limit or other ''interloping'' levels. Fine structure in the Rydberg series has been identified and interpreted in terms of Jc j coupling. A number of detailed studies have been performed on the interloping resonances: These include lifetime determination by lineshape analysis, isotope shifts, hyperfine structure, and photoionizati…
Unexpectedly large charge radii of neutron-rich calcium isotopes
Despite being a complex many-body system, the atomic nucleus exhibits simple structures for certain "magic" numbers of protons and neutrons. The calcium chain in particular is both unique and puzzling: evidence of doubly-magic features are known in 40,48Ca, and recently suggested in two radioactive isotopes, 52,54Ca. Although many properties of experimentally known Ca isotopes have been successfully described by nuclear theory, it is still a challenge to predict their charge radii evolution. Here we present the first measurements of the charge radii of 49,51,52Ca, obtained from laser spectroscopy experiments at ISOLDE, CERN. The experimental results are complemented by state-of-the-art theo…
Precision atomic physics techniques for nuclear physics with radioactive beams
Atomic physics techniques for the determination of ground-state properties of radioactive isotopes are very sensitive and provide accurate masses, binding energies, Q-values, charge radii, spins, and electromagnetic moments. Many fields in nuclear physics benefit from these highly accurate numbers. They give insight into details of the nuclear structure for a better understanding of the underlying effective interactions, provide important input for studies of fundamental symmetries in physics, and help to understand the nucleosynthesis processes that are responsible for the observed chemical abundances in the Universe. Penning-trap and and storage-ring mass spectrometry as well as laser spe…
The laser ion source trap for highest isobaric selectivity in online exotic isotope production
The improvement in the performance of a conventional laser ion source in the laser ion source and trap (LIST) project is presented, which envisages installation of a repeller electrode and a linear Paul trap/ion guide structure. This approach promises highest isobaric purity and optimum temporal and spatial control of the radioactive ion beam produced at an online isotope separator facility. The functionality of the LIST was explored at the offline test separators of University of Mainz (UMz) and ISOLDE/CERN, using the UMz solid state laser system. Ionization efficiency and selectivity as well as time structure and transversal emittance of the produced ion beam was determined. Next step aft…
First application of the Laser Ion Source and Trap (LIST) for on-line experiments at ISOLDE
The Laser Ion Source and Trap (LIST) provides a new mode of operation for the resonance ionization laser ion source (RILIS) at ISOLDE/CERN, reducing the amount of surface-ionized isobaric contaminants by up to four orders of magnitude. After the first successful on-line test at ISOLDE in 2011 the LIST was further improved in terms of efficiency, selectivity, and reliability through several off-line tests at Mainz University and at ISOLDE. In September 2012, the first on-line physics experiments to use the LIST took place at ISOLDE. The measurements of the improved LIST indicate more than a twofold increase in efficiency compared to the LIST of the 2011 run. The suppression of surface-ionize…
ISOLTRAP Mass Measurements for Weak-Interaction Studies
International audience; The conserved-vector-current (CVC) hypothesis of the weak interaction and the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix are two fundamental postulates of the Standard Model. While existing data on CVC supports vector current conservation, the unitarity test of the CKM matrix currently fails by more than two standard deviations. High-precision mass measurements performed with the ISOLTRAP experiment at ISOLDE/CERN provide crucial input for these fundamental studies by greatly improving our knowledge of the decay energy of super-allowed beta decays. Recent results of mass measurements on the beta emitters 18Ne, 22Mg, 34Ar, and 74Rb as pertaining to weak-i…
Characterization of the shape-staggering effect in mercury nuclei
In rare cases, the removal of a single proton (Z) or neutron (N) from an atomic nucleus leads to a dramatic shape change. These instances are crucial for understanding the components of the nuclear interactions that drive deformation. The mercury isotopes (Z = 80) are a striking example1,2: their close neighbours, the lead isotopes (Z = 82), are spherical and steadily shrink with decreasing N. The even-mass (A = N + Z) mercury isotopes follow this trend. The odd-mass mercury isotopes 181,183,185Hg, however, exhibit noticeably larger charge radii. Due to the experimental difficulties of probing extremely neutron-deficient systems, and the computational complexity of modelling such heavy nucl…
Spin and magnetic moment of23Mg
A negative magnetic moment of 23Mg has been determined by collinear laser spectroscopy at CERN-ISOLDE. The absolute value is in agreement with previous measurements by nuclear magnetic resonance while the sign points at high-seniority configurations. The result is consistent with shell-model predictions for nuclei with valence nucleons in the sd shell. ispartof: Journal of Physics G, Nuclear and Particle Physics vol:44 issue:7 status: published
Towards a direct measurement of the g-factor of a single isolated protonThis paper was presented at the International Conference on Precision Physics of Simple Atomic Systems, held at École de Physique, les Houches, France, 30 May–4 June, 2010.
Our Penning trap experiment aims at a direct high-precision measurement of the proton g-factor. We present the experimental setup and the measurement technique using the continuous Stern-Gerlach effect. Recent test measurements with a single proton stored in a Penning trap with a strong magnetic bottle and a new toroidal detection system are discussed. For a stringent test of the CPT symmetry the described technique can also be applied to the antiproton.
Demonstration of the double Penning Trap technique with a single proton
Spin flips of a single proton were driven in a Penning trap with a homogeneous magnetic field. For the spin-state analysis the proton was transported into a second Penning trap with a superimposed magnetic bottle, and the continuous Stern-Gerlach effect was applied. This first demonstration of the double Penning trap technique with a single proton suggests that the antiproton magnetic moment measurement can potentially be improved by three orders of magnitude or more. Spin flips of a single proton were driven in a Penning trap with a homogeneous magnetic field. For the spin-state analysis the proton was transported into a second Penning trap with a superimposed magnetic bottle, and the cont…
Direct high-precision mass measurements onAm241,243,Pu244, andCf249
The absolute masses of four long-lived transuranium nuclides, $^{241,243}\mathrm{Am}$, $^{244}\mathrm{Pu}$, $^{244}\mathrm{Pu}$, and $^{249}\mathrm{Cf}$, in the vicinity of the deformed $N=152$ neutron shell closure have been measured directly with the Penning-trap mass spectrometer TRIGA-TRAP. Our measurements confirm the AME2012 mass values of $^{241,243}\mathrm{Am}$ and $^{244}\mathrm{Pu}$ within one standard deviation, which were indirectly determined, by decay spectroscopy studies. In the case of the $^{249}\mathrm{Cf}$ mass, a discrepancy of more than three standard deviations has been observed, affecting absolute masses even in the superheavy element region. The implementation of the…
High-precision mass spectrometer for light ions
The precise knowledge of the atomic masses of light atomic nuclei, e.g. the proton, deuteron, triton and helion, is of great importance for several fundamental tests in physics. However, the latest high-precision measurements of these masses carried out at different mass spectrometers indicate an inconsistency of five standard deviations. To determine the masses of the lightest ions with a relative precision of a few parts per trillion and investigate this mass problem a cryogenic multi-Penning trap setup, LIONTRAP (Light ION TRAP), was constructed. This allows an independent and more precise determination of the relevant atomic masses by measuring the cyclotron frequency of single trapped …
Shell structure of potassium isotopes deduced from their magnetic moments
\item[Background] Ground-state spins and magnetic moments are sensitive to the nuclear wave function, thus they are powerful probes to study the nuclear structure of isotopes far from stability. \item[Purpose] Extend our knowledge about the evolution of the $1/2^+$ and $3/2^+$ states for K isotopes beyond the $N = 28$ shell gap. \item[Method] High-resolution collinear laser spectroscopy on bunched atomic beams. \item[Results] From measured hyperfine structure spectra of K isotopes, nuclear spins and magnetic moments of the ground states were obtained for isotopes from $N = 19$ up to $N = 32$. In order to draw conclusions about the composition of the wave functions and the occupation of the …
Recent developments in and applications of resonance ionization mass spectrometry
Resonance Ionization Mass Spectrometry (RIMS) has nowadays reached the status of a routine method for sensitive and selective ultratrace determination of long-lived radioactive isotopes in environmental, biomedical and technical samples. It provides high isobaric suppression, high to ultra-high isotopic selectivity and good overall efficiency. Experimental detection limits are as low as 106 atoms per sample and permit the fast and sensitive determination of ultratrace amounts of radiotoxic contaminations. Experimental arrangements for the detection of different radiotoxic isotopes, e.g. 236–244Pu, 89,90Sr and 99Tc in environmental samples are described, and the application of RIMS to the ul…
A parts-per-billion measurement of the antiproton magnetic moment
The magnetic moment of the antiproton is measured at the parts-per-billion level, improving on previous measurements by a factor of about 350. Comparing the fundamental properties of normal-matter particles with their antimatter counterparts tests charge–parity–time (CPT) invariance, which is an important part of the standard model of particle physics. Many properties have been measured to the parts-per-billion level of uncertainty, but the magnetic moment of the antiproton has not. Christian Smorra and colleagues have now done so, and report that it is −2.7928473441 ± 0.0000000042 in units of the nuclear magneton. This is consistent with the magnetic moment of the proton, 2.792847350 ± 0.0…
gFactor of HydrogenlikeSi13+28
We determined the experimental value of the $g$ factor of the electron bound in hydrogenlike $^{28}\mathrm{Si}^{13+}$ by using a single ion confined in a cylindrical Penning trap. From the ratio of the ion's cyclotron frequency and the induced spin flip frequency, we obtain $g=1.995\text{ }348\text{ }958\text{ }7(5)(3)(8)$. It is in excellent agreement with the state-of-the-art theoretical value of 1.995 348 958 0(17), which includes QED contributions up to the two-loop level of the order of $(Z\ensuremath{\alpha}{)}^{2}$ and $(Z\ensuremath{\alpha}{)}^{4}$ and represents a stringent test of bound-state quantum electrodynamics calculations.
Laser spectroscopy of gallium isotopes beyond N = 50
The installation of an ion-beam cooler-buncher at the ISOLDE, CERN facility has provided increased sensitivity for collinear laser spectroscopy experiments. A migration of single-particle states in gallium and in copper isotopes has been investigated through extensive measurements of ground state and isomeric state hyperfine structures. Lying beyond the N = 50 shell closure, 82Ga is the most exotic nucleus in the region to have been studied by optical methods, and is reported here for the first time. ispartof: pages:012071-6 ispartof: Journal of Physics: Conference Series vol:381 issue:1 pages:012071-6 ispartof: Rutherford Centennial Conference on Nuclear Physics location:Manchester, UK dat…
Mass Measurement on therp-Process Waiting PointKr72
With the aim of improving nucleosynthesis calculations, we performed for the first time, a direct high-precision mass measurement on the waiting point in the astrophysical rp-process 72Kr. We used the ISOLTRAP Penning trap mass spectrometer located at ISOLDE/CERN. The measurement yielded a relative mass uncertainty of δm/m = 1.2×10-7. In addition, the masses of 73Kr and 74Kr were measured directly with relative mass uncertainties of 1.0×10-7 and 3×10-8, respectively. We analyzed the role of 72Kr in the rp-process during X-ray bursts using the ISOLTRAP and previous mass values of 72-74Kr.
High-accuracy mass measurements on neutron deficient neon isotopes
International audience; The atomic masses of the short-lived nuclides 17Ne and 19Ne have been measured with the triple-trap mass spectrometer ISOLTRAP at ISOLDE/CERN. The obtained mass excess for both nuclides deviates significantly from the literature value, in the case of 17Ne about 40 keV. The mass value of 17Ne can be applied for a test of the isobaric multiplet mass equation with respect to an isospin T = 3/2 quartet. In addition, both masses can contribute to the data analysis of collinear laser-spectroscopy experiments where mean-square nuclear-charge radii are determined.
Charge Radius of the Short-Lived Ni68 and Correlation with the Dipole Polarizability
We present the first laser spectroscopic measurement of the neutron-rich nucleus ^{68}Ni at the N=40 subshell closure and extract its nuclear charge radius. Since this is the only short-lived isotope for which the dipole polarizability α_{D} has been measured, the combination of these observables provides a benchmark for nuclear structure theory. We compare them to novel coupled-cluster calculations based on different chiral two- and three-nucleon interactions, for which a strong correlation between the charge radius and dipole polarizability is observed, similar to the stable nucleus ^{48}Ca. Three-particle-three-hole correlations in coupled-cluster theory substantially improve the descrip…
Spins and electromagnetic moments of Cd101–109
The neutron-deficient cadmium isotopes have been measured by high-resolution laser spectroscopy at CERN-ISOLDE. The electromagnetic moments of $^{101}\mathrm{Cd}$ have been determined for the first time and the quadrupole-moment precision of $^{103}\mathrm{Cd}$ has been vastly improved. The results on the sequence of $5/{2}^{+}$ ground states in $^{101--109}\mathrm{Cd}$ are tentatively discussed in the context of simple structure in complex nuclei as similarities are found with the $11/{2}^{\ensuremath{-}}$ states in the neutron-rich cases. Comparison with shell-model calculations reveals a prominent role of the two holes in the $Z=50$ core.
Zeeman Spectroscopy in Penning Traps
Abstract Penning traps are the instruments of choice to determine the magnetic moments of long lived or stable charged particles. The virtual absence of collisions with background molecules when working in ultra-high vacuum, the small volume which the trapped particles occupy at low kinetic energies, and the extremely long observation and coherence times allow for very high precision in Zeeman spectroscopy. When applied to singly ionized multielectron atoms the experiments serve for tests of atomic structure calculations. The magnetic moments in few-electron systems such as hydrogen- or lithium-like highly charged ions can be calculated with remarkable precision in the frame of bound-state …
Quantensprünge des Proton-Spins
Die genaue Messung des Kernmagnetons von Protonen und Antiprotonen stellt einen hochempfindlichen Test der Materie-Antimaterie-Symmetrie dar. Einer Kollaboration aus Max-Planck-Institut fur Kernphysik in Heidelberg, Universitat Mainz und GSI Darmstadt ist zum ersten Mal der Nachweis von Spin-Quantensprungen mit einem einzelnen gespeicherten Proton gelungen. Dies ermoglicht eine direkte Prazisionsmessung des magnetischen Moments des Protons und zukunftig auch des Antiprotons.
Collinear laser spectroscopy at ISOLDE: new methods and highlights
Over three and a half decades of collinear laser spectroscopy and the COLLAPS setup have played a major role in the ISOLDE physics programme. Based on a general experimental principle and diverse approaches towards higher sensitivity, it has provided unique access to basic nuclear properties such as spins, magnetic moments and electric quadrupole moments as well as isotopic variations of nuclear mean square charge radii. While previous methods of outstanding sensitivity were restricted to selected chemical elements with special atomic properties or nuclear decay modes, recent developments have yielded a breakthrough in sensitivity for nuclides in wide mass ranges. These developments include…
Mass measurements of $^{56-57}$Cr and the question of shell reincarnation at N = 32
Binding energies determined with high accuracy provide smooth derivatives of the mass surface for analysis of shell and pairing effects. Measurements with the Penning trap mass spectrometer ISOLTRAP at CERN-ISOLDE were made for $^{56-57}$Cr for which an accuracy of 4 $\times 10^{-8}$ was achieved. Analysis of the mass surface for the supposed new N = 32 shell closure rather indicates a sub-shell closure, but of a different nature than known cases such as $^{94}$Sr.