0000000000018011

AUTHOR

Marisa C. Oliveira

Mechanism of photoluminescence in intrinsically disordered CaZrO3 crystals: First principles modeling of the excited electronic states

Abstract CaZrO3 (CZO) powders obtained by the polymeric precursor method at 400 °C, and then, the samples were annealed at different temperatures (400, 600, 800, and 1000 °C) and characterized by X-ray diffraction, Raman and ultraviolet–visible spectroscopic methods, along with photoluminescence (PL) emissions. First principle calculations based on the density functional theory (DFT), using a periodic cell models, provide a theoretical framework for understanding the PL spectra based on the localization and characterization of the ground and electronic excited states. Fundamental (singlet, s ) and excited (singlet, s* , and triplet, t* ) electronic states were localized and characterized us…

research product

Structure, morphology and photoluminescence emissions of ZnMoO4: RE 3+=Tb3+ - Tm3+ - X Eu3+ (x = 1, 1.5, 2, 2.5 and 3 mol%) particles obtained by the sonochemical method

Made available in DSpace on 2018-12-11T17:36:34Z (GMT). No. of bitstreams: 0 Previous issue date: 2018-06-25 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Ministerio de Economía y Competitividad ZnMoO4 and ZnMoO4: RE3+ = 1% Tb3+, 1% Tm3+, x Eu3+ (x = 1, 1.5, 2, 2.5 and 3 mol%) particles were prepared by a sonochemical method. The influence of the dopant content on photoluminescent behavior was investigated. The X-ray diffraction results confirmed the formation of the α-ZnMoO4 phase with a triclinic crystalline structure. The influence of th…

research product

Computational chemistry meets experiments for explaining the geometry, electronic structure, and optical properties of Ca10V6O25

In this paper, we present a combined experimental and theoretical study to disclose, for the first time, the structural, electronic, and optical properties of Ca10V6O25 crystals. The microwave-assisted hydrothermal (MAH) method has been employed to synthesize these crystals with different morphologies, within a short reaction time at 120 °C. First-principle quantum mechanical calculations have been performed at the density functional theory level to obtain the geometry and electronic properties of Ca10V6O25 crystal in the fundamental and excited electronic states (singlet and triplet). These results, combined with the measurements of X-ray diffraction (XRD) and Rietveld refinements, confirm…

research product

Understanding the White-Emitting CaMoO4 Co-Doped Eu3+, Tb3+, and Tm3+ Phosphor through Experiment and Computation

In this article, the synthesis by means of the spray pyrolysis method, of the CaMoO4 and rare-earth cation (RE3+)-doped CaMoO4:xRE3+ (RE3+ = Eu3+, Tb3+, and Tm3+; and x = 1, 2, and 4% mol) compounds, is presented. The as-synthesized samples were characterized using X-ray diffraction, Rietveld refinement, field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, and photoluminescence (PL) spectroscopy. To complement and rationalize the experimental results, first-principles calculations, at the density functional theory level, have been performed to analyze the band structure and density of states. In addition, a theoretical method based on the calculations of surface energie…

research product

Experimental and theoretical study of the energetic, morphological, and photoluminescence properties of CaZrO3:Eu3+

In this study, we present a combined experimental and theoretical study of the geometry, electronic structure, morphology, and photoluminescence properties of CaZrO3:Eu3+ materials. The polymeric precursor method was employed to synthesize CaZrO3:Eu3+ crystals, while density functional theory calculations were performed to determine the geometrical and electronic properties of CaZrO3:Eu3+ in its ground and excited electronic states (singlet and triplet). The results were combined with X-ray diffraction (XRD) measurements to elucidate the local structural changes induced by the introduction of Eu3+ in the crystal lattice. This process results in the formation of intermediate levels in the ba…

research product

Experimental and theoretical study to explain the morphology of CaMoO4 crystals

Abstract CaMoO 4 crystals were prepared by a controlled co-precipitation method and processed in a domestic microwave-assisted hydrothermal system with two different surfactants (ethyl 4-dimethylaminobenzoate and 1,2,4,5-benzenetetracarboxylic dianhydride). The corresponding structures were characterized by X-ray diffraction and Rietveld refinement techniques, Fourier transform infrared spectroscopy, ultraviolet–visible absorption spectroscopy, and photoluminescence measurements. Field emission scanning electron microscopy was used to investigate the morphology of the as-synthesized aggregates. The structure, the surface stability of the (001), (112), (100), (110), (101), and (111) surfaces…

research product

Geometry, electronic structure, morphology, and photoluminescence emissions of BaW1-xMoxO4 (x = 0, 0.25, 0.50, 0.75, and 1) solid solutions: Theory and experiment in concert

Abstract The design of a solid solution with tunable electro-optical properties and multifunctionality is a promising strategy for developing novel materials. In this work, BaW1-xMoxO4 (x = 0, 0.25, 0.5, 0.75, and 1) solid solutions have been successfully prepared for the first time by a co-precipitation method. Their crystal structure and phase composition were determined by X-ray diffraction and Rietveld refinements. Fourier transform infrared and micro Raman spectroscopy in combination with field-emission scanning electron microscopy (FE-SEM) were used to describe the microstructures and chemical compositions of the synthesized materials. The influence of chemical composition on morpholo…

research product