0000000000018113

AUTHOR

Claus Feldmann

Comparing the luminescence processes of YVO4:Eu and core-shell YVO4@YF3 nanocrystals with bulk-YVO4:Eu

Abstract Comparative analysis of bulk, non-coated and core-shelled nanocrystalline YVO4:Eu was performed by means of time-resolved luminescence and VUV excitation luminescence spectroscopy techniques. Nanocrystalline YVO4:Eu samples – both as-prepared and YF3 core-shelled – have been synthesized by means of a microwave-assisted synthesis in ionic liquids, which allows to obtain 10–12 nm nanoparticles with high crystallinity. The results show noticeable differences between bulk and nanocrystalline YVO4:Eu in photoluminescence experimental data, which explains by influence of the nanocrystal surface. A YF3 core-shell layer around YVO4:Eu nanoparticles partially recovers the intensity of the E…

research product

Mechanism for energy transfer processes between Ce3+ and Tb3+ in LaPO4:Ce,Tb nanocrystals by time-resolved luminescence spectroscopy

The energy transfer mechanisms between Ce 3+ and Tb 3+ in LaPO 4 :Ce,Tb nanocrystals have been studied by means of time-resolved luminescence spectroscopy in a wide temperature range (10-300K). Special attention was paid to detailed comparative analysis of both rise and decay emission components of both Ce 3+ and Tb 3+ . Surprisingly, a relatively slow rise (several microseconds) of Tb 3+ emission under 266-nm laser excitation was detected, which corresponds to the 4f-5d transition of Ce 3+ in LaPO 4 . It was shown that this rise of Tb 3+ emission could not have arisen due to relaxation of Ce 3+ ions, whose excited state has a lifetime of about 20ns. It was demonstrated that the generally a…

research product

Ultrafine MnWO4 nanoparticles and their magnetic properties

Abstract Ultrafine nanoparticles of MnWO4, a compound showing low-temperature multiferroicity in the bulk, were synthesized by the polyol method. Studies using powder X-ray diffraction, scanning and transmission electron microscopy, dynamic light scattering, differential sedimentation and sorption techniques show the formation of a single-phase material, which is composed of MnWO4 nanoparticles with a prolate ellipsoidal shape (short axis of 4–5 nm, long axis of 11–12 nm) and an unprecedented high specific surface area of 166 m2 g−1. The as-prepared MnWO4 nanoparticles are readily crystalline after the liquid-phase synthesis. Temperature and field dependent magnetization measurements indica…

research product

Luminescence of nano- and macrosized LaPO4:Ce,Tb excited by synchrotron radiation

Abstract Comparing the luminescence properties of nanosized and macroscopic LaPO4:Ce,Tb powders are performed in wide spectral range using synchrotron radiation. In the present study, LaPO4:Ce,Tb nanopowder was produced by means of a microwave-induced synthesis in ionic liquids, whereas the bulk sample represents a commercial lamp phosphor. Emission and excitation of both, Ce3+ and Tb3+ luminescence, is observed to be different when comparing bulk and nanosized LaPO4:Ce,Tb. In particular, it was shown that the fine structure of the Ce3+ as well as the Tb3+ related emission is poorly resolved for the nanomaterial. It is suggested that the nanoparticles surface plays a key role regarding the …

research product