0000000000018557

AUTHOR

Ana Ferrer-albero

Analysis of in-silico body surface P-wave integral maps show important differences depending on the connections between coronary sinus and left atrium

The electrical connections between the atrial coronary sinus (CS) and the left atrial (LA) myocardium have an effect on the overall atrial activation pattern and the P-wave morphology. In this study, we use our validated multi-scale 3D human atrial-torso model to elucidate which electro-anatomical configuration of connections between CS and LA more accurately reproduces a set of body surface P-wave integral maps (BSPiM) acquired in the clinic. We performed atrial biophysical simulations by pacing in distal and proximal LA sites. The corresponding in-silico BSPiM were then computed and compared with published clinical patterns obtained from patients. Important differences in BSPiM were obser…

research product

Non-invasive localization of atrial ectopic beats by using simulated body surface P-wave integral maps

Non-invasive localization of continuous atrial ectopic beats remains a cornerstone for the treatment of atrial arrhythmias. The lack of accurate tools to guide electrophysiologists leads to an increase in the recurrence rate of ablation procedures. Existing approaches are based on the analysis of the P-waves main characteristics and the forward body surface potential maps (BSPMs) or on the inverse estimation of the electric activity of the heart from those BSPMs. These methods have not provided an efficient and systematic tool to localize ectopic triggers. In this work, we propose the use of machine learning techniques to spatially cluster and classify ectopic atrial foci into clearly diffe…

research product

Factors affecting basket catheter detection of real and phantom rotors in the atria: A computational study

[EN] Anatomically based procedures to ablate atrial fibrillation (AF) are often successful in terminating paroxysmal AF. However, the ability to terminate persistent AF remains disappointing. New mechanistic approaches use multiple-electrode basket catheter mapping to localize and target AF drivers in the form of rotors but significant concerns remain about their accuracy. We aimed to evaluate how electrode-endocardium distance, far-field sources and inter-electrode distance affect the accuracy of localizing rotors. Sustained rotor activation of the atria was simulated numerically and mapped using a virtual basket catheter with varying electrode densities placed at different positions withi…

research product

Atrial Fibrosis Hampers Non-invasive Localization of Atrial Ectopic Foci From Multi-Electrode Signals: A 3D Simulation Study

[EN] Introduction: Focal atrial tachycardia is commonly treated by radio frequency ablation with an acceptable long-term success. Although the location of ectopic foci tends to appear in specific hot-spots, they can be located virtually in any atrial region. Multi-electrode surface ECG systems allow acquiring dense body surface potential maps (BSPM) for non-invasive therapy planning of cardiac arrhythmia. However, the activation of the atria could be affected by fibrosis and therefore biomarkers based on BSPM need to take these effects into account. We aim to analyze the effect of fibrosis on a BSPM derived index, and its potential application to predict the location of ectopic foci in the …

research product