0000000000019165

AUTHOR

Mireille Claustres

showing 5 related works from this author

Allelic age of the USH2A c.2299delG mutation

2010

24 p., figuras y bibliografía

Gene isoformUsher syndromePopulationc.2299delGSingle-nucleotide polymorphismBiologyPolymorphism Single NucleotideArticleLinkage DisequilibriumWhite PeopleExonUSH2Aotorhinolaryngologic diseasesGeneticsmedicineHaplotypeHumansAlleleeducationGeneAllelesPhylogenyGenetics (clinical)GeneticsExtracellular Matrix Proteinseducation.field_of_studyHaplotypemedicine.diseaseHaplotypesMutationDatingUsher Syndromes
researchProduct

Multicenter validation study for the certification of a CFTR gene scanning method using next generation sequencing technology.

2018

AbstractBackground:Many European laboratories offer molecular genetic analysis of theCFTRgene using a wide range of methods to identify mutations causative of cystic fibrosis (CF) and CFTR-related disorders (CFTR-RDs). Next-generation sequencing (NGS) strategies are widely used in diagnostic practice, and CE marking is now required for most in vitro diagnostic (IVD) tests in Europe. The aim of this multicenter study, which involved three European laboratories specialized in CF molecular analysis, was to evaluate the performance of Multiplicom’s CFTR MASTR Dx kit to obtain CE-IVD certification.Methods:A total of 164 samples, previously analyzed with well-established “reference” methods for t…

0301 basic medicineValidation studycongenital hereditary and neonatal diseases and abnormalitiesCertification[SDV]Life Sciences [q-bio]Clinical BiochemistrySequencing dataCFTR molecular diagnosiCystic Fibrosis Transmembrane Conductance RegulatorComputational biology030105 genetics & heredityBiologyCFTR molecular diagnosisDNA sequencingIn vitro diagnosticCftr genecystic fibrosis03 medical and health sciencesHumanscystic fibrosiCE-IVD certificationBiochemistry (medical)Reproducibility of ResultsIllumina miseqSequence Analysis DNAGeneral MedicineMolecular analysisEurope030104 developmental biologyMulticenter studycomparative sequencing analysicomparative sequencing analysisMutationnext-generation sequencingMultiplex Polymerase Chain Reaction
researchProduct

Contribution of molecular analyses in diagnosing Marfan syndrome and type I fibrillinopathies: an international study of 1009 probands.

2008

International audience; BACKGROUND: The diagnosis of Marfan syndrome (MFS) is usually initially based on clinical criteria according to the number of major and minor systems affected following international nosology. The number of FBN1 mutation carriers, at risk of aortic complications who would not be properly diagnosed based only on clinical grounds, is of growing importance owing to the increased availability of molecular screening. The aim of the study was to identify patients who should be considered for FBN1 mutation screening. METHODS: Our international series included 1009 probands with a known FBN1 mutation. Patients were classified as either fulfilling or not fulfilling "clinical"…

ProbandNosologyMarfan syndromeMalePediatricsSystemic diseaseMESH : International CooperationFibrillin-1International CooperationMESH : Aged[SDV.GEN] Life Sciences [q-bio]/GeneticsMarfan SyndromeMESH : ChildMESH: ChildEpidemiologyMESH : FemaleEctopia lentisChildGenetics (clinical)AortaAortic dissectionMESH: Aged0303 health sciences030305 genetics & heredityMicrofilament ProteinsMESH: AortaMESH : AdultConnective tissue disease3. Good healthFemaleMESH : Mutationmusculoskeletal diseasesAdultmedicine.medical_specialtycongenital hereditary and neonatal diseases and abnormalitiesMESH: MutationMESH : Microfilament ProteinsAdolescentMESH : MaleFibrillinsMESH: Marfan Syndrome03 medical and health sciencesMESH: Microfilament ProteinsMESH : AdolescentGeneticsmedicineHumans030304 developmental biologyAgedMESH: Adolescent[SDV.GEN]Life Sciences [q-bio]/GeneticsMESH : Marfan SyndromeMESH: Humansbusiness.industryMESH : HumansMESH : AortaMESH: Adultmedicine.diseaseMESH: MaleMESH: International CooperationMutation[ SDV.GEN ] Life Sciences [q-bio]/GeneticsbusinessMESH: FemaleJournal of medical genetics
researchProduct

De novo 15q21.1q21.2 deletion identified through FBN1 MLPA and refined by 244K array-CGH in a female teenager with incomplete Marfan syndrome

2010

International audience; Interstitial deletions involving the 15q21.1 band are very rare. Only 4 of these cases have been studied using molecular cytogenetic techniques in order to confirm the deletion of the whole FBN1 gene. The presence of clinical features of the Marfan syndrome (MFS) spectrum associated with mental retardation has been described in only 2/4 patients. Here we report on a 16-year-old female referred for suspicion of MFS (positive thumb and wrist sign, scoliosis, joint hyperlaxity, high-arched palate with dental crowding, dysmorphism, mitral insufficiency with dystrophic valve, striae). She had therefore 3 minor criteria according to the Ghent nosology. She also had speech …

AdultMalemusculoskeletal diseasesProbandMarfan syndromecongenital hereditary and neonatal diseases and abnormalitiesAdolescent[SDV]Life Sciences [q-bio]Fibrillin-1BiologyFibrillinsBioinformaticsPolymerase Chain ReactionMarfan SyndromeLoss of heterozygosity03 medical and health sciencesTransforming Growth Factor betaIntellectual DisabilityGeneticsmedicineHumansMultiplex ligation-dependent probe amplificationAlleleChildGeneIn Situ Hybridization FluorescenceGenetics (clinical)Oligonucleotide Array Sequence AnalysisSequence Deletion030304 developmental biologyGeneticsChromosomes Human Pair 15Comparative Genomic Hybridization0303 health sciencesMicrofilament Proteins030305 genetics & heredityGeneral Medicinemedicine.diseasePedigree3. Good healthPhenotypeMutationMicrosatelliteFemaleDNA ProbesHaploinsufficiencyMicrosatellite RepeatsEuropean Journal of Medical Genetics
researchProduct

The FBN2 gene: new mutations, locus-specific database (Universal Mutation Database FBN2), and genotype-phenotype correlations.

2009

International audience; Congenital contractural arachnodactyly (CCA) is an extremely rare disease, due to mutations in the FBN2 gene encoding fibrillin-2. Another member of the fibrillin family, the FBN1 gene, is involved in a broad phenotypic continuum of connective-tissue disorders including Marfan syndrome. Identifying not only what is in common but also what differentiates these two proteins should enable us to better comprehend their respective functions and better understand the multitude of diseases in which these two genes are involved. In 1995 we created a locus-specific database (LSDB) for FBN1 mutations with the Universal Mutation Database (UMD) tool. To facilitate comparison of …

Fibrillin-2MESH : Polymorphism GeneticFibrillin-1DNA Mutational AnalysisMESH : Genotype[SDV.GEN] Life Sciences [q-bio]/Geneticscomputer.software_genreMESH: Genotype0302 clinical medicineGenotypeDatabases GeneticMissense mutationCongenital contractural arachnodactylyMESH: DNA Mutational AnalysisGenetics (clinical)MESH: Databases GeneticRegulation of gene expressionGenetics0303 health sciencesDatabaseMESH : Gene Expression RegulationMicrofilament ProteinsPhenotypeMESH: Gene Expression RegulationBeals-Hecht syndrome3. Good healthINCMESH : PhenotypePhenotypeMESH : MutationFibrillinmusculoskeletal diseasesMESH: MutationGenotypeMESH : Microfilament Proteinsdatabase OFFICIAL JOURNAL wwwhgvsorg & 2008 WILEY-LISSLocus (genetics)fibrillinMESH : DNA Mutational AnalysisBiologyFibrillinsMESH: PhenotypeMESH: Sequence Homology Nucleic Acidcongenital contractural arachnodactyly03 medical and health sciencesMESH: Microfilament ProteinsSequence Homology Nucleic AcidMESH: Polymorphism GeneticGeneticsmedicineHumansMESH : Sequence Homology Nucleic AcidFBN2CCAMESH : Databases GeneticGene030304 developmental biology[SDV.GEN]Life Sciences [q-bio]/GeneticsPolymorphism GeneticMESH: HumansMESH : Humansmedicine.diseaseGene Expression RegulationMutation[ SDV.GEN ] Life Sciences [q-bio]/Geneticscomputer030217 neurology & neurosurgery
researchProduct