0000000000020215
AUTHOR
Aintzane Zabaleta
Single-Cell Characterization of the Multiple Myeloma (MM) Immune Microenvironment Identifies CD27-Negative T Cells As Potential Source of Tumor-Reactive Lymphocytes
Background: The broad use of immunomodulatory drugs (IMiDs) and the breakthrough of novel immunotherapies in MM, urge the optimization of immune monitoring to help tailoring treatment based on better prediction of patients' response according to their immune status. For example, current T cells immune monitoring is of limited value because the phenotype of tumor-reactive T cells is uncertain. Aims: To characterize the MM immune microenvironment at the single-cell level and to identify clinically relevant subsets for effective immune monitoring. Methods: We used a semi-automated pipeline to unveil full cellular diversity based on unbiased clustering, in a large flow cytometry dataset of 86 n…
Immunological Biomarkers of Fatal COVID-19: A Study of 868 Patients
Information on the immunopathobiology of coronavirus disease 2019 (COVID-19) is rapidly increasing; however, there remains a need to identify immune features predictive of fatal outcome. This large-scale study characterized immune responses to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection using multidimensional flow cytometry, with the aim of identifying high-risk immune biomarkers. Holistic and unbiased analyses of 17 immune cell-types were conducted on 1,075 peripheral blood samples obtained from 868 COVID-19 patients and on samples from 24 patients presenting with non-SARS-CoV-2 infections and 36 healthy donors. Immune profiles of COVID-19 patients were significa…
FlowCT for the analysis of large immunophenotypic data sets and biomarker discovery in cancer immunology
Key Points FlowCT is a new computational workspace for unveiling cellular diversity and objectively identifying biomarkers in large immune monitoring studies.FlowCT identified T-cell biomarkers predictive of malignant transformation and survival in SMM and active MM data sets.
Immune biomarkers to predict SARS-CoV-2 vaccine effectiveness in patients with hematological malignancies
AbstractThere is evidence of reduced SARS-CoV-2 vaccine effectiveness in patients with hematological malignancies. We hypothesized that tumor and treatment-related immunosuppression can be depicted in peripheral blood, and that immune profiling prior to vaccination can help predict immunogenicity. We performed a comprehensive immunological characterization of 83 hematological patients before vaccination and measured IgM, IgG, and IgA antibody response to four viral antigens at day +7 after second-dose COVID-19 vaccination using multidimensional and computational flow cytometry. Health care practitioners of similar age were the control group (n = 102). Forty-four out of 59 immune cell types …
Immunologic characterization of COVID-19 patients with hematological cancer
Not available.