0000000000020316
AUTHOR
W. Weintraub
Yrast superdeformed band in59Cu
High-spin states in Cu-59 were populated using the fusion-evaporation reactions Si-28+ Ca-40 at a beam energy of 125 MeV and Ar-36+Si-28 at a beam energy of 143 MeV. The Gammasphere array in conjunction with ancillary detector systems allowed for the identification of a superdeformed rotational band in Cu-59, which was firmly linked to low-spin yrast states. Using directional correlations of oriented states, a spin-parity assignment of I-pi=25/2(+) to the band head was possible. The average quadrupole moment of the band is measured to be Q(t)=(2.24+/-0.40) e b. The characteristics of the band are compared to neighboring nuclei and predictions of different mean-field theories.
Prolate yrast cascade in183Tl
The yrast sequence in ${}^{183}\mathrm{Tl}$ has been studied for the first time in recoil-mass selected \ensuremath{\gamma}-ray spectroscopic measurements. A rotational-like cascade of seven transitions is established down to the band head with probable spin and parity ${(13/2}^{+}).$ Unlike in the adjacent odd-mass Tl nuclei, prompt \ensuremath{\gamma} decay from the yrast band to a lower lying weakly deformed (oblate) structure is not observed. These features are consistent with the predicted drop of the prolate band head in ${}^{183}\mathrm{Tl}$ compared to ${}^{185}\mathrm{Tl}.$ The implications for the prolate energy minimum in odd-mass Tl nuclei at the neutron ${i}_{13/2}$ midshell $(…