0000000000021393
AUTHOR
Anne-laure Joly
Heat shock protein 27 is involved in SUMO-2/3 modification of heat shock factor 1 and thereby modulates the transcription factor activity
Heat shock protein 27 (HSP27) accumulates in stressed cells and helps them to survive adverse conditions. We have already shown that HSP27 has a function in the ubiquitination process that is modulated by its oligomerization/phosphorylation status. Here, we show that HSP27 is also involved in protein sumoylation, a ubiquitination-related process. HSP27 increases the number of cell proteins modified by small ubiquitin-like modifier (SUMO)-2/3 but this effect shows some selectivity as it neither affects all proteins nor concerns SUMO-1. Moreover, no such alteration in SUMO-2/3 conjugation is achievable by another HSP, such as HSP70. Heat shock factor 1 (HSF1), a transcription factor responsib…
Extracellular HSP27 mediates angiogenesis through Toll-like receptor 3.
The heat-shock protein 27 (HSP27) is up-regulated in tumor cells and released in their microenvironment. Here, we show that extracellular HSP27 has a proangiogenic effect evidenced on chick chorioallantoic membrane. To explore this effect, we test the recombinant human protein (rhHSP27) at physiopathological doses (0.1-10 μg/ml) onto human microvascular endothelial cells (HMECs) grown as monolayers or spheroids. When added onto HMECs, rhHSP27 dose-dependently accelerates cell migration (with a peak at 5 μg/ml) and favors spheroid sprouting within 12-24 h. rhHSP27 increases VEGF gene transcription and promotes secretion of VEGF-activating VEGF receptor type 2. Increased VEGF transcription is…
The HSP90 inhibitor, 17AAG, protects the intestinal stem cell niche and inhibits graft versus host disease development.
IF 7.932; International audience; Graft versus host disease (GvHD), which is the primary complication of allogeneic bone marrow transplantation, can alter the intestinal barrier targeted by activated donor T-cells. Chemical inhibition of the stress protein HSP90 was demonstrated in vitro to inhibit T-cell activation and to modulate endoplasmic reticulum (ER) stress to which intestinal cells are highly susceptible. Since the HSP90 inhibitor 17-allylamino-demethoxygeldanamycin (17AAG) is developed in clinics, we explored here its ability to control intestinal acute GvHD in vivo in two mouse GvHD models (C57BL/6 -> BALB/c and FVB/N -> Lgr5-eGFP), ex vivo in intestine organoids and in vitro in …