0000000000023316

AUTHOR

Tiziana Triulzi

0000-0003-3050-8676

showing 4 related works from this author

Infiltrating mast cell-mediated stimulation of estrogen receptor activity in breast cancer cells promotes the luminal phenotype

2019

Abstract Tumor growth and development is determined by both cancer cell–autonomous and microenvironmental mechanisms, including the contribution of infiltrating immune cells. Because the role of mast cells (MC) in this process is poorly characterized and even controversial, we investigated their part in breast cancer. Crossing C57BL/6 MMTV-PyMT mice, which spontaneously develop mammary carcinomas, with MC-deficient C57BL/6-KitW-sh/W-sh (Wsh) mice, showed that MCs promote tumor growth and prevent the development of basal CK5-positive areas in favor of a luminal gene program. When cocultured with breast cancer cells in vitro, MCs hindered activation of cMET, a master regulator of the basal pr…

Male0301 basic medicineCancer ResearchReceptor ErbB-2Estrogen receptorBreast NeoplasmsMice TransgenicCell CommunicationCell Growth ProcessesMice03 medical and health sciences0302 clinical medicineBreast cancerImmune systemCell Line TumormedicineAnimalsHumansMast CellsNeoplasm Metastasisskin and connective tissue diseasesEstrogen receptor activityMice Inbred BALB Cbusiness.industryMammary Neoplasms ExperimentalCancerProto-Oncogene Proteins c-metmedicine.diseaseMast cellPhenotypeErbB ReceptorsMice Inbred C57BL030104 developmental biologymedicine.anatomical_structureReceptors EstrogenOncology030220 oncology & carcinogenesisCancer researchFemalebusinessmast cell estrogen receptor breast cancer luminal phenotypeEstrogen receptor alpha
researchProduct

PDGFRβ and FGFR2 mediate endothelial cell differentiation capability of triple negative breast carcinoma cells

2014

Triple negative breast cancer (TNBC) is a very aggressive subgroup of breast carcinoma, still lacking specific markers for an effective targeted therapy and with a poorer prognosis compared to other breast cancer subtypes. In this study we investigated the possibility that TNBC cells contribute to the establishment of tumor vascular network by the process known as vasculogenic mimicry, through endothelial cell differentiation. Vascular-like functional properties of breast cancer cell lines were investigated in vitro by tube formation assay and in vivo by confocal microscopy, immunofluorescence or immunohistochemistry on frozen tumor sections. TNBCs express endothelial markers and acquire th…

Cancer ResearchPathologymedicine.medical_specialtyPDGFRmedicine.medical_treatmentTriple Negative Breast NeoplasmsMice SCIDBiologyEndothelial cell differentiationTargeted therapyReceptor Platelet-Derived Growth Factor betachemistry.chemical_compoundBreast cancerCell Line TumorGeneticsmedicineAnimalsHumansVasculogenic mimicryBreastRNA Small InterferingReceptor Fibroblast Growth Factor Type 2skin and connective tissue diseasesTriple-negative breast cancerResearch ArticlesNeovascularization PathologicFGFREndothelial CellsCell DifferentiationGeneral MedicineTriple Negative Breast Neoplasmsmedicine.diseaseImmunohistochemistryVascular endothelial growth factorOncologychemistryVasculogenic mimicryCancer researchMolecular MedicineTNBC; Vasculogenic mimicry; PDGFR; FGFRTriple-Negative Breast CarcinomaFemaleRNA InterferenceTNBC
researchProduct

The EU-funded I3LUNG Project:Integrative Science, Intelligent Data Platform for Individualized LUNG Cancer Care With Immunotherapy

2023

Although immunotherapy (IO) has changed the paradigm for the treatment of patients with advanced non-small cell lung cancers (aNSCLC), only around 30% to 50% of treated patients experience a long-term benefit from IO. Furthermore, the identification of the 30 to 50% of patients who respond remains a major challenge, as programmed Death-Ligand 1 (PD-L1) is currently the only biomarker used to predict the outcome of IO in NSCLC patients despite its limited efficacy. Considering the dynamic complexity of the immune system-tumor microenvironment (TME) and its interaction with the host's and patient's behavior, it is unlikely that a single biomarker will accurately predict a patient's outcomes. …

Pulmonary and Respiratory MedicineCancer ResearchArtificial intelligenceOncologyNon-small cell lung cancerPredictive biomarkersMachine learningPersonalized medicine
researchProduct

Gut Microbiota Condition the Therapeutic Efficacy of Trastuzumab in HER2-Positive Breast Cancer.

2021

Abstract Emerging evidence indicates that gut microbiota affect the response to anticancer therapies by modulating the host immune system. In this study, we investigated the impact of gut microbiota on immune-mediated trastuzumab antitumor efficacy in preclinical models of HER2-positive breast cancer and in 24 patients with primary HER2-positive breast cancer undergoing trastuzumab-containing neoadjuvant treatment. In mice, the antitumor activity of trastuzumab was impaired by antibiotic administration or fecal microbiota transplantation from antibiotic-treated donors. Modulation of the intestinal microbiota was reflected in tumors by impaired recruitment of CD4+ T cells and granzyme B–posi…

0301 basic medicineCD4-Positive T-LymphocytesCancer ResearchReceptor ErbB-2medicine.medical_treatmentGut floraGranzymesMice0302 clinical medicineAntineoplastic Agents ImmunologicalTrastuzumabTumor Microenvironmentskin and connective tissue diseasesNeoadjuvant therapybiologyFecal Microbiota TransplantationInterleukin-12Neoadjuvant TherapyAnti-Bacterial AgentsTreatment OutcomeOncology030220 oncology & carcinogenesisStreptomycinCytokinesGut microbiota trastuzumab breast cancerFemaleTaxoidsmedicine.drugBridged-Ring CompoundsBreast NeoplasmsSettore MED/08 - Anatomia PatologicaNitric Oxide03 medical and health sciencesImmune systemBreast cancerVancomycinmedicineAnimalsHumansCyclophosphamideImmunity Mucosalbusiness.industryLachnospiraceaeDendritic cellDendritic CellsTrastuzumabbiology.organism_classificationmedicine.diseaseGastrointestinal Microbiome030104 developmental biologyGranzymeDoxorubicinImmune Systembiology.proteinCancer researchInterferonsbusinessCancer research
researchProduct