0000000000023697

AUTHOR

Roberto Palma

showing 8 related works from this author

Design and characterization of the SiPM tracking system of NEXT-DEMO, a demonstrator prototype of the NEXT-100 experiment

2013

NEXT-100 experiment aims at searching the neutrinoless double-beta decay of the Xe-136 isotope using a TPC filled with a 100 kg of high-pressure gaseous xenon, with 90% isotopic enrichment. The experiment will take place at the Laboratorio Subterraneo de Canfranc (LSC), Spain. NEXT-100 uses electroluminescence (EL) technology for energy measurement with a resolution better than 1% FWHM. The gaseous xenon in the TPC additionally allows the tracks of the two beta particles to be recorded, which are expected to have a length of up to 30 cm at 10 bar pressure. The ability to record the topological signature of the beta beta 0 nu events provides a powerful background rejection factor for the bet…

Enginyeria -- InstrumentsMECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURASBar (music)Tracking (particle physics)7. Clean energy01 natural sciencesEngineering instrumentsTECNOLOGIA ELECTRONICAchemistry.chemical_compoundData acquisitionSilicon photomultiplierOptics0103 physical sciencesPhysical instrumentsVisible and IR photons (solid-state)010306 general physicsInstrumentationPhoton detectors for UVMathematical PhysicsDetectors de radiacióPhysics010308 nuclear & particles physicsDynamic rangebusiness.industryTime projection Chambers (TPC)Electrical engineeringTetraphenyl butadieneFísicaTracking systemDetectorsGaseous imaging and tracking detectorschemistryNuclear countersParticle tracking detectors (Solid-state detectors)Física -- InstrumentsbusinessDark current
researchProduct

Optimal measurement setup for damage detection in piezoelectric plates

2009

[EN] An optimization of the excitation-measurement configuration is proposed for the characterization of damage in PZT-4 piezoelectric plates, from a numerical point of view. To perform such an optimization, a numerical method to determine the location and extent of defects in piezoelectric plates is developed by combining the solution of an identification inverse problem, using genetic algorithms and gradient-based methods to minimize a cost functional, and using an optimized finite element code and meshing algorithm. In addition, a semianalytical estimate of the probability of detection is developed and validated, which provides a flexible criterion to optimize the experimental design. Th…

MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURASPiezoelectric sensorMechanical EngineeringNumerical analysisGeneral EngineeringSystem identificationInverse problemProbability of detectionFinite element methodMechanics of MaterialsSearch algorithmFinite Element MethodInverse problemIdentifiabilityGeneral Materials SciencePiezoelectricGradient methodAlgorithmMathematicsInternational Journal of Engineering Science
researchProduct

Radiopurity control in the NEXT-100 double beta decay experiment

2013

An extensive material screening and selection process is underway in the construction of the "Neutrino Experiment with a Xenon TPC" (NEXT), intended to investigate neutrinoless double beta decay using a high-pressure xenon gas TPC filled with 100 kg of Xe enriched in 136Xe. Determination of the radiopurity levels of the materials is based on gamma-ray spectroscopy using ultra-low background germanium detectors at the Laboratorio Subterraneo de Canfranc (Spain) and also on Glow Discharge Mass Spectrometry. Materials to be used in the shielding, pressure vessel, electroluminescence and high voltage components and energy and tracking readout planes have been already taken into consideration. T…

PhysicsNuclear physicsXenonchemistryDouble beta decayIsotopes of xenonchemistry.chemical_elementGamma spectroscopyNeutrinoParticle detectorRadioactive decaySemiconductor detectorAIP Conference Proceedings
researchProduct

Operation and first results of the NEXT-DEMO prototype using a silicon photomultiplier tracking array

2013

NEXT-DEMO is a high-pressure xenon gas TPC which acts as a technological test-bed and demonstrator for the NEXT-100 neutrinoless double beta decay experiment. In its current configuration the apparatus fully implements the NEXT-100 design concept. This is an asymmetric TPC, with an energy plane made of photomultipliers and a tracking plane made of silicon photomultipliers (SiPM) coated with TPB. The detector in this new configuration has been used to reconstruct the characteristic signature of electrons in dense gas, demonstrating the ability to identify the MIP and "blob" regions. Moreover, the SiPM tracking plane allows for the definition of a large fiducial region in which an excellent e…

PhotomultiplierMECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURASPhysics - Instrumentation and DetectorsPhysical measurementsParticle tracking detectors (Gaseous detectors)Time projection chambersPattern recognition SystemsFísica -- Mesuramentschemistry.chemical_elementFOS: Physical sciencesTracking (particle physics)01 natural sciences7. Clean energyTECNOLOGIA ELECTRONICAXenonSilicon photomultiplierOpticsCluster analysisDouble beta decayPattern recognition0103 physical sciencesCalibrationReconeixement de formes (Informàtica)Calibratge010306 general physicsInstrumentationImage resolutionMathematical PhysicsDetectors de radiacióPhysicsCalibration and fitting methods010308 nuclear & particles physicsbusiness.industryDetectorCluster findingFísicaInstrumentation and Detectors (physics.ins-det)Double-beta decay detectorsAnàlisi de conglomeratschemistryNuclear countersCalibrationbusiness
researchProduct

Description and commissioning of NEXT-MM prototype: first results from operation in a Xenon-Trimethylamine gas mixture

2014

[EN] A technical description of NEXT-MM and its commissioning and first performance is reported. Having an active volume of ∼35 cm drift × 28 cm diameter, it constitutes the largest Micromegas-read TPC operated in Xenon ever constructed, made by a sectorial arrangement of the 4 largest single wafers manufactured with the Microbulk technique to date. It is equipped with a suitably pixelized readout and with a sufficiently large sensitive volume (∼23 l) so as to contain long (∼20 cm) electron tracks. First results obtained at 1 bar for Xenon and Trymethylamine (Xe-(2%)TMA) mixture are presented. The TPC can accurately reconstruct extended background tracks. An encouraging fu…

Enginyeria -- InstrumentsMECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURASMaterials sciencePhysics - Instrumentation and DetectorsTime projection chambersParticle tracking detectors (Gaseous detectors)chemistry.chemical_elementTrimethylamineFOS: Physical sciencesElectron7. Clean energyEngineering instrumentsTECNOLOGIA ELECTRONICAchemistry.chemical_compoundXenonOpticsWafer[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]InstrumentationMathematical PhysicsDetectors de radiacióTime projection chamberbusiness.industryActive volumeMicroMegas detectorInstrumentation and Detectors (physics.ins-det)Double-beta decay detectorschemistryVolume (thermodynamics)Nuclear countersFísica nuclearbusiness
researchProduct

SiPMs coated with TPB: coating protocol and characterization for NEXT

2012

[EN] Silicon photomultipliers (SiPM) are the photon detectors chosen for the tracking readout in NEXT, a neutrinoless \bb decay experiment which uses a high pressure gaseous xenon time projection chamber (TPC). The reconstruction of event track and topology in this gaseous detector is a key handle for background rejection. Among the commercially available sensors that can be used for tracking, SiPMs offer important advantages, mainly high gain, ruggedness, cost-effectiveness and radio-purity. Their main drawback, however, is their non sensitivity in the emission spectrum of the xenon scintillation (peak at 175 nm). This is overcome by coating these sensors with the organic wavelength shifte…

Materials sciencePhysics - Instrumentation and DetectorsFOS: Physical scienceschemistry.chemical_elementengineering.materialWavelength shifterTracking (particle physics)7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentTECNOLOGIA ELECTRONICAHigh Energy Physics - Experiment (hep-ex)XenonSilicon photomultiplierCoating0103 physical sciencesSensitivity (control systems)Visible and IR photons (solid-state)010306 general physicsInstrumentationPhoton detectors for UVMathematical PhysicsScintillationTime projection chamber010308 nuclear & particles physicsbusiness.industryTime projection Chambers (TPC)FísicaDetectorsInstrumentation and Detectors (physics.ins-det)Gas detectorsScintillators scintillation and light emission processes (solid gas and liquid scintillators)Detectors de gasoschemistryParticle tracking detectors (Solid-state detectors)engineeringOptoelectronicsbusiness
researchProduct

Present Status and Future Perspectives of the NEXT Experiment

2014

Gómez Cadenas, Juan José et al.

MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURASNuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsArticle SubjectDouble beta decay experimentchemistry.chemical_elementFOS: Physical sciencesNEXT7. Clean energy01 natural sciencesSignalMathematical SciencesTECNOLOGIA ELECTRONICANuclear physicsXenonDouble beta decay0103 physical sciences010306 general physicsphysics.ins-detPhysicsTime projection chamberIsotope010308 nuclear & particles physicsDetectorInstrumentation and Detectors (physics.ins-det)lcsh:QC1-999chemistryPhysical SciencesFísica nuclearlcsh:PhysicsEnergy (signal processing)
researchProduct

Radiopurity control in the NEXT-100 double beta decay experiment: procedures and initial measurements

2013

[EN] The "Neutrino Experiment with a Xenon Time-Projection Chamber" (NEXT) is intended to investigate the neutrinoless double beta decay of Xe-136, which requires a severe suppression of potential backgrounds. An extensive screening and material selection process is underway for NEXT since the control of the radiopurity levels of the materials to be used in the experimental set-up is a must for rare event searches. First measurements based on Glow Discharge Mass Spectrometry and gamma-ray spectroscopy using ultra-low background germanium detectors at the Laboratorio Subterraneo de Canfranc (Spain) are described here. Activity results for natural radioactive chains and other common radionucl…

MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURASPhysics - Instrumentation and DetectorsGlow Discharge Mass SpectrometryPhysics::Instrumentation and Detectorschemistry.chemical_elementFOS: Physical sciencesGermanium01 natural sciences7. Clean energyTECNOLOGIA ELECTRONICANuclear physicsCambres d'ionitzacióXenonDouble beta decay0103 physical sciencesNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentInstrumentationDetectors de radiacióMathematical PhysicsPhysicsRadionuclideRadiation calculationsIonization chambers010308 nuclear & particles physicsTime projection Chambers (TPC)Gamma detectors (scintillators CZT HPG HgI etc)FísicaInstrumentation and Detectors (physics.ins-det)chemistryNuclear countersNeutrino
researchProduct