0000000000024405
AUTHOR
Manuela Ceraulo
Effect of compatibilization on the photo-oxidation behaviour of polyethylene/polyamide 6 blends and their nanocomposites
Abstract Polymer based nanocomposites are increasingly attracting interest from academia and industry, and the use of polymer blends as matrices greatly increase their potential field of application. In order to improve their characteristics, the use of compatibilizers acting on the blend components is mandatory. However, this also leads to rising concerns regarding the behaviour of polymer blend based nanocomposites upon being subjected to photo-oxidative degradation. It is known that morphology can deeply influence the photo-oxidative behaviour, and this can be therefore deeply influenced by the blend components and by the use of compatibilizers. In this work, polymer blend nanocomposites…
Caratterizzazione e lavorabilità di nanocompositi a matrice poliestere
Rheological Behaviour, Mechanical Properties and Processability of Biodegradable Polymer Systems for Film Blowing
Films for agricultural or packaging applications are typically made of low density polyethylene (LDPE). They are produced through the film blowing process, which requires the use of polymers with suitable rheological properties. Furthermore, the short shelf-life which is often related to many packed products leads to huge amounts of plastic-based wastes. This suggests the use of biodegradable and/or compostable polymers in replacement for traditional ones. To this regard, only few data exist on the rheological properties of biodegradable polymers undergoing film blowing processing. In this work, a detailed investigation on the rheological, mechanical and processability behaviour of some bio…
Prediction of the morphology of polymer-clay nanocomposites
Abstract Polymer nanocomposites have continually attracted increasing interest over the last decade, due to significant improvements they can offer compared to neat polymer matrices. However, the final morphology of a nanocomposite, determined by several variables, can significantly influence the macroscopic properties of the final product. Therefore, it is important to study the interactions between processing, morphology, structure and rheological properties, and the suitability of existing models in order to predict the system's behaviour with change of the main processing variables. In this work, the applicability of a predictive theory based on the Wu model was formulated and proposed …
Effect of the orientation on the photooxidation behaviour of polymer films
Abstract The effect of the orientation on the photooxidation of polymers is quite controversial. Both improvement of the photo-resistance along the oriented direction and worsening of the photooxidation kinetic have been reported. In this work the effect of the orientation has been investigated on films of PE, PP and PET with different degree of orientation and crystallinity. The results show that the photo-stability, measured from the decay of the elongation at break curve as a function of the irradiation time, improves in the more oriented direction, but this is more and more relevant with increasing the crystallinity degree. It has been hypothesized that the reinforcing action of the ori…
Properties-morphology-processing relationships in polymer-based clay nanocomposites
LAVORABILITA E PROPRIETA MECCANICHE DI POLIMERI BIODEGRADABILI
USE OF BIODEGRADABLE POLYMERS FOR FOAM EXTRUSION
Morphology, Rheological and Mechanical Properties of Isotropic and Anisotropic PP/rPET/GnP Nanocomposite Samples
The effect of graphene nanoplatelets (GnPs) on the morphology, rheological, and mechanical properties of isotropic and anisotropic polypropylene (PP)/recycled polyethylene terephthalate (rPET)-based nanocomposite are reported. All the samples were prepared by melt mixing. PP/rPET and PP/rPET/GnP isotropic sheets were prepared by compression molding, whereas the anisotropic fibers were spun using a drawing module of a capillary viscometer. The results obtained showed that the viscosity of the blend is reduced by the presence of GnP due to the lubricating effect of the graphene platelets. However, the Cox–Merz rule is not respected. Compared to the PP/rPET blend, the GnP led to a slight incre…
Physical and biological properties of electrospun poly( d , l ‐lactide)/nanoclay and poly( d , l ‐lactide)/nanosilica nanofibrous scaffold for bone tissue engineering
Electrospun scaffolds exhibiting high physical performances with the ability to support cell attachment and proliferation are attracting more and more scientific interest for tissue engineering applications. The inclusion of inorganic nanoparticles such as nanosilica and nanoclay into electrospun biopolymeric matrices can meet these challenging requirements. The silica and clay incorporation into polymeric nanofibers has been reported to enhance and improve the mechanical properties as well as the osteogenic properties of the scaffolds. In this work, for the first time, the physical and biological properties of polylactic acid (PLA) electrospun mats filled with different concentrations of n…
Relazioni proprietà-morfologia-lavorazione in materiali nanocompositi a matrice polimerica
Effect of Hot Drawing on the Mechanical Properties of Biodegradable Fibers
The use of biodegradable polymers is increasingly attracting interest over the last years, since they can reduce the environmental effects related to disposal of traditional plastics and, in general, the use of fossil, non-renewable resources. One of the most promising applications is represented by fibers production. However, the orientation and the crystallinity degrees can significantly affect the mechanical properties. Therefore, it is of interest to investigate on the optimum processing conditions, in order to improve the mechanical properties. In particular, while crystallinity can be slightly modified by the processing, orientation can be significantly improved. In this work, the eff…
Degradation of polymer blends: A brief review
Abstract The usefulness of any material, including polymer blends, depends on its degradability and durability. The blend composition can significantly affect the degradative behavior of a polymer blend and can differ from the degradation routes of the pure components since the interactions among different species in the blends during degradation, and among the degradation products, can occur. These reactions can lead either to an acceleration of the degradation rate or to a stabilizing effect in comparison with the pure components. Thus, the additive rule cannot be often applied in case of degradation of polymer blends and, therefore, it is difficult to predict the degradative behavior of …
Prediction of the flow curves of thermoplastic polymer/clay systems from torque data
Abstract The aim of this work was to determine some relevant rheological parameters of polymer/clay systems using mixing torque and mixing speed data obtained during processing in an internal mixer. The method used was originally proposed by Marquez et al. for monophase polymers, and is here applied to polymer/clay systems for the first time. Several clay-containing composites based on different polymer matrices (i.e., LDPE, HDPE, PA6, EVA) were used to verify the effectiveness of the method for measuring the flow curves of these polymer/clay systems. The results indicated that, for all the systems at low clay level, the rheological curves calculated with the Marquez method fit quite well t…
Biodegradable Polymers for the Production of Nets for Agricultural Product Packaging
It is well known that the need for more environmentally friendly materials concerns, among other fields, the food packaging industry. This regards also, for instance, nets used for agricultural product (e.g., citrus fruits, potatoes) packaging. These nets are typically manufactured by film blowing technique, with subsequent slicing of the films and cold drawing of the obtained strips, made from traditional, non-biodegradable polymer systems. In this work, two biodegradable polymer systems were characterized from rheological, processability, and mechanical points of view, in order to evaluate their suitability to replace polyethylene-based polymer systems typically used for agricultural prod…
Rheological Behavior Under Shear and Non-Isothermal Elongational Flow of Biodegradable Polymers for Foam Extrusion
The production of many items, in particular for food packaging applications, is based on foam extrusion and thermoforming. These operations require the use of polymers which can grant some specific rheological properties, both under shear and elongational flow. In this work, the behavior of some biodegradable polymers [Mater-Bi® and poly(lactic acid)] under shear and non-isothermal elongational flow was investigated and compared with a traditional, non-biodegradable polymer, in order to assess their suitability for industrial-scale foam extrusion and thermoforming. The rheological characterization evidenced the differences between the different biodegradable polymers and the reference polys…
Relazione proprietà-morfologia-parametri di processo in materiali nanocompositi a matrice polimerica
Poly-l-Lactic Acid (PLLA)-Based Biomaterials for Regenerative Medicine: A Review on Processing and Applications
Synthetic biopolymers are effective cues to replace damaged tissue in the tissue engineering (TE) field, both for in vitro and in vivo application. Among them, poly-l-lactic acid (PLLA) has been highlighted as a biomaterial with tunable mechanical properties and biodegradability that allows for the fabrication of porous scaffolds with different micro/nanostructures via various approaches. In this review, we discuss the structure of PLLA, its main properties, and the most recent advances in overcoming its hydrophobic, synthetic nature, which limits biological signaling and protein absorption. With this aim, PLLA-based scaffolds can be exposed to surface modification or combined with other bi…
CARATTERIZZAZIONE E LAVORABILITA DI NANOCOMPOSITI A MATRICE POLIESTERE
Effect of cold drawing on mechanical properties of biodegradable fibers.
Purpose Biodegradable polymers are currently gaining importance in several fields, because they allow mitigation of the impact on the environment related to disposal of traditional, nonbiodegradable polymers, as well as reducing the utilization of oil-based sources (when they also come from renewable resources). Fibers made of biodegradable polymers are of particular interest, though, it is not easy to obtain polymer fibers with suitable mechanical properties and to tailor these to the specific application. The main ways to tailor the mechanical properties of a given biodegradable polymer fiber are based on crystallinity and orientation control. However, crystallinity can only marginally be…
Effect of stress and temperature on the thermomechanical degradation of a PE-LD/OMMT nanocomposites
Thermomechanical degradation of nanocomposites is a topical issue that has not been fully investigated as demonstrated by the low number of papers available in the literature regarding this spe- cific aspect. In particular, with regards to low density polyethylene/clay nanocomposites, the degrada- tion behavior is very complex since it involves the degradation paths of both the polymer matrix and the organomodified nanoclay. In the present work, the effects of mechanical stress and temperature on the thermomechanical behavior of PE-LD/organomodified clay nanocomposites and the degradation paths were investigated by rheological, FT-IR and mechanical methods. The results have shown that the t…
Effect of the compatibilization on the photooxidation of a PA6/LDPE blend and their clay nanocomposites
Effect of processing temperature and mixing time on the properties of PP/GnP nanocomposites
Abstract During processing of molten polymers the thermal and mechanical stress acting on the melt in presence of oxygen can induce degradation with a modification of the chemical structure of the polymers. This picture can become even more relevant if the melt is a multiphasic polymer system. In this last case, the effects of the degradation depend also on the presence of a second phase and on the interactions between the two phases. In this work, the effect of the processing conditions, temperature and time, have been considered in order to investigate the thermo-mechanical and thermo-oxidative degradation of nanocomposites made by polypropylene and different contents of graphene nanoplat…
Photooxidation and photostabilization of EVA and cross-linked EVA
Abstract Cross-linked EVA copolymers are widely used as encapsulant material for photovoltaic modules in order to protect the solar cell from the dangerous and degrading environmental factors like moisture and UV radiations. The protection of these modules from photooxidation is the main important objective in their production. In this work, samples of cured EVA in presence of different types of stabilizers have been photooxidized to better understand the photooxidation behavior and the effects of these stabilizers on the mechanical properties. All the results obtained on the cross-linked samples have been compared with those obtained in the same conditions and with the same formulations wi…
In-line monitoring of the photooxidation behaviour of a PP/clay nanocomposite through creep measurements
Abstract The photooxidation behaviour of a polypropylene/organomodified clay nanocomposite sample has been monitored by means of a new apparatus through the record of the creep curves measured while the sample is subjected to the contemporary action of temperature, tensile strength and UV radiation. The creep curves of the irradiated samples are higher than those of the non-irradiated samples and the curves diverge when the molecular weight begins to decrease because of the degradation. At the same the formation of carbonyl groups is observed. The creep curves of the non-irradiated and irradiated samples give, then, an immediate evaluation of the begin and of the development of the photooxi…
Effect of a Compatibilizer on the Morphology and Properties of Polypropylene/Polyethylentherephthalate Spun Fibers
Fibers spun by melt spinning of binary and ternary polypropylene/ polyethylenetherephthalate blends have been produced and characterized in order to investigate the effect of a compatibilizer on their morphology and mechanical properties. The compatibilizer was a maleic anhydride-functionalized rubber copolymer. The effect of the compatibilizer was well evident in the isotropic state, as the morphology became very fine, the size of the dispersed particles was very small, and the adhesion was better. The effect of the compatibilizer on the mechanical properties is very relevant, especially in the elongation at break. On the contrary, no relevant effect was observed in the anisotropic oriente…
Photo-oxidation of polypropylene/graphene nanoplatelets composites
Abstract The photo-oxidation behaviour of polymer nanocomposites depends not only on the photo-oxidation behaviour of the matrix, but also on the chemical composition, on the physical properties of the nanoparticles and on the possible interactions between the two phases. In the case of nanocomposites with carbonaceous particles, the main effect is a photo-stabilization due to the absorption of the UV energy and the radical scavenging action. In this work we investigated the effect of the presence of graphene nanoplatelets on the photo-oxidation behaviour of the polypropylene. The presence of the graphene nanoplatelets improves the photo-resistance of the polypropylene and this effect incre…
Rheological behaviour, filmability and mechanical properties of biodegradable polymer films
The rheological properties in shear flow and non isothermal elongational flow of two biodegradable polymers, belonging to two different classes of materials, have been measured and compared with those of a film blowing grade high density polyethylene in order to assess the filmability of these polymers. The mechanical properties of isotropic and anisotropic samples have been also reported.
The Use of Waste Hazelnut Shells as a Reinforcement in the Development of Green Biocomposites.
Biodegradable Mater-Bi (MB) composites reinforced with hazelnut shell (HS) powder were prepared in a co-rotating twin-screw extruder followed by compression molding and injection molding. The effects of reinforcement on the morphology, static and dynamic mechanical properties, and thermal and rheological properties of MB/HS biocomposites were studied. Rheological tests showed that the incorporation of HS significantly increased the viscosity of composites with non-Newtonian behavior at low frequencies. On the other hand, a scanning electron microscope (SEM) examination revealed poor interfacial adhesion between the matrix and the filler. The thermal property results indicated that HS could …
Processing and characterization of highly oriented fibres of biodegradable nanocomposites
Abstract Biodegradable polymeric materials are becoming day by day ever more important in packaging, agriculture, single-use cutleries and other large consumer applications. The major part of those materials is used under the form of film, i.e. subjected to elongational flow, but the main problem is that they often offer poor mechanical properties. Adding nanofillers, like Multi Walled Carbon Nanotubes (MWCNTs) may solve this problem but only if there is a full control of their orientation inside the material. Aim of this work is to investigate the processing-properties-morphology relationships for a system prepared under elongation flow of MaterBi and commercial MWCNTs. The materials were …
A Green Approach for Recycling Compact Discs
Compact discs (CDs) and digital versatile discs (DVDs) are mainly made by polycarbonate disc, a thin layer of aluminum or silver, a thin layer of a coating and a thin layer of a label of paper or PET. The recycling of these discs is difficult due to the removal of these non-polymeric layers and to our best knowledge, no industrial plants have been resent for their recycling. In this work, we propose a facile way to remove the non-polymeric layers and investigate the effect of the repetitive extrusion process on the processability and on the mechanical properties of the recycled polycarbonate. A few works have been published dealing with both the removal of the non-polymeric layers and the m…
Injection Molding and Mechanical Properties of Bio-Based Polymer Nanocomposites
The use of biodegradable/bio-based polymers is of great importance in addressing several issues related to environmental protection, public health, and new, stricter legislation. Yet some applications require improved properties (such as barrier or mechanical properties), suggesting the use of nanosized fillers in order to obtain bio-based polymer nanocomposites. In this work, bionanocomposites based on two different biodegradable polymers (coming from the Bioflex and MaterBi families) and two different nanosized fillers (organo-modified clay and hydrophobic-coated precipitated calcium carbonate) were prepared and compared with traditional nanocomposites with high-density polyethylene (HDPE…
Effect of kind and content of organo-modified clay on properties of PET nanocomposites
In this work we report the properties of nanocomposite based on PET with two different samples of organically modified montmorillonites. In particular, we studied the effect of the filler concentration on morphology, rheology, and mechanical performance, focusing our attention on the effect of the degradation phenomena of the clay modifiers. The results indicate that at low clay level the morphology achieved is mainly intercalated. On increasing the filler level, coalescence and/or bad defragmentation phenomena induce a coarser morphology, as confirmed by XRD, SEM, and TEM observations. When a more polar organic modifier is used to modify the clay, the particle adhesion and distribution is …
Compatibilization of a polyethylene/polyamide 6 blend nanocomposite
Polymer blends of incompatible components need to be compatibilized to give rise to a blend with good properties. At the same way, polymer/clay nanocomposites show the same problem because of different chemical nature of the polymer matrix and of the clay. Compatibilization is then necessary if an incompatible polymer blend is filled with an organomodified clay. In this work a polyethylene/polyamide 6 blend filled with an organomodified clay has been compatibilized with a maleic anyhidride grafted SEBS (styrene-ethylene-butylene-styrene) copolymer and a glicidylmethacrylate-ethylene copolymer. The results show that compatibilization improves the mechanical properties in terms of elongation …
“Compatibilization” through Elongational Flow Processing of LDPE/PA6 Blends
Polyamide/polyolefin blends have gained attention from the academia and the industry for several years. However, in order to optimize their properties, some drawbacks such as chemical incompatibility must be adequately overcome. This can be done by adding suitable compatibilizers. On the other hand, it is less known that suitable processing techniques may also lead to significant results. In a previous work on a low-density polyethylene/polyamide 6 (LDPE/PA6) blend, we found that the orientation due to elongational flow processing conditions could lead to an unexpected brittle&ndash
Thermomechanical degradation of PLA-based nanobiocomposite
Nanobiocomposites are a new class of biodegradable polymer materials with nanometric dispersion of inert particles in a biodegradable polymer matrix that show very interesting properties often very different from those of conventional- filled polymers and also biodegradability. An important issue in the applications of the biodegradable polymers is their easy degradability during processing due to the thermomechanical stress or to the presence of humidity. In this work, the thermomechanical degradation behavior of a nanobiocomposite made by a PLA-based blend and an organomodified montmorillonite has been investigated. The degradation kinetics has been followed by means of rheological, mecha…
Antimicrobial thermoplastic materials for biomedical applications prepared by melt processing
In this work thermoplastic polymers with antimicrobial properties were prepared by incorporating an antibiotic, i.e., ciprofloxacin (CFX), by melt processing. Two different polymers were used as matrices, i.e., polypropylene (PP) and poly(lactid acid) (PLA) and different concentrations of CFX have been incorporated. The antimicrobial properties, the release kinetic and the mechanical performances of the prepared materials were evaluated.
Compatibilization of polyethylene/polyamide 6 blend nanocomposite films
Polymer blends of incompatible components need to undergo compatibilization, in order to give rise to a blend with good physical properties. At the same way, polymer/clay nanocomposites show this problem because of different chemical nature of the polymer matrix and of the clay. Compatibilization is therefore more necessary if an incompatible polymer blend is filled with an organomodified clay in order to give a final material with good properties. In this work, a polyethylene/polyamide 6 blend filled with an organomodified clay has been compatibilized with a maleic anhydride grafted SEBS (styrene-ethylene-butylene-styrene) copolymer and a glicidylmethacrylate-ethylene copolymer. The result…
Photooxidation and stabilization of a solar cell encapsulating crosslinked EVA
FLUSSO ELONGAZIONALE NON ISOTERMO DI POLIMERI BIODEGRADABILI
Effect of Elongational Flow and Polarity of Organomodified Clay on Morphology and Mechanical Properties of a PLA Based Nanobiocomposite
Abstract In biodegradable polymer world nanobiocomposites represent a new group of materials filled with inert nanoparticles that shows very interesting properties and the biodegradability of the matrix. In this work we have studied the effect of the polarity of the organomodified montmorillonite and of the elongational flow on the morphology and the rheological and mechanical properties of a new nanobiocomposite with a matrix of biodegradable PLA based blend. The elastic modulus enhances in presence of the nanofiller and this increase is larger and larger with the increment of the orientation. The tensile strength does not show any significant change at the same level of orientation. Moreo…
Effetto della filatura di un sistema polimerico biodegradabile nanocomposito
Comparison of the Recycling Behavior of a Polypropylene Sample Aged in Air and in Marine Water
During the processing and during their lifetime, polymers are subjected to several environmental stresses—thermomechanical, photo-oxidative, etc.—that can strongly modify their chemical and molecular structure and, consequently, their morphology. Reduction of the molecular weight and formation of double bonds and oxygenated groups are the main changes observed as a consequence of the degradation. As a result of these changes, the macroscopic properties are dramatically modified. These changes can have a relevant effect if the post-consumer plastic manufacts are recycled. In this work, a sample of polypropylene subjected to two different degradation histories—photo-oxidatio…
A simple method to interpret the rheological behaviour of intercalated polymer nanocomposites
Abstract Nanocomposites are a new class of polymer composites that exhibit an interesting combination of chemical, physical, thermal and mechanical properties. Only small amounts of nanofiller are sufficient to generate great variations of many properties. This work focuses on the rheological behaviour of the intercalated polymer nanocomposites in shear flow. The increase of the viscosity and the more pronounced non-Newtonian behaviour is interpreted simply considering the increase of volume of the inert phase caused by the intercalation of the macromolecules. Indeed, the volume of the intercalated tactoids increases with increasing the interlayer distance. On the other hand, the interlayer…
CHARACTERIZATION AND PROCESSABILITY NOF POLYESTER BASED NANOCOMPOSITES
Effect of the elongational flow on morphology and properties of polypropylene/graphene nanoplatelets nanocomposites
Abstract In this work the effect of the presence of graphene nanoplatelets (GnP) on the morphology and mechanical properties of polypropylene/GnP nanocomposites has been investigated when these polymer systems are subjected to non-isothermal elongational flow in a melt spinning operation. The presence of the GnP magnifies the effect of the elongational flow. Indeed, the elastic modulus and the tensile strength of nanocomposites increases with the orientation more than that observed for the pure matrix. Moreover, the elongation at break increases at low values of the draw ratio for the nanocomposites, while, the matrix shows the expected decrease in deformability. These effects have been cor…
A model for the prediction of the flow curves from interlayer distance and vice versa for intercalated polymer and polymer blend nanocomposites
In this work was proposed a simple model to predict the viscosity and the power law index from the interlayer distance and, vice versa, the interlayer distance from a single flow curve for intercalated polymer nanocomposites. This model cannot be applied to exfoliated nanocomposites or when other interactions are present in the systems.
Photo-Oxidative and Soil Burial Degradation of Irrigation Tubes Based on Biodegradable Polymer Blends
: Irrigation tubes based on biodegradable polymers were prepared via an extrusion-drawing process by Irritec and compared to conventional pipes made of high-density polyethylene (HDPE). A commercial polylactide/poly (butyleneadipate-co-butyleneterephthalate) (PLA/PBAT) blend (Bio-Flex®
Compatibilization of Polypropylene/Polyamide 6 Blend Fibers Using Photo-Oxidized Polypropylene.
The use of polyamide/polyolefin blends has gained importance and concern for years, but they also show some issues to be adequately addressed, such as the incompatibility between the two components. This is usually overcome by using suitable compatibilizers, typically based on functionalized polyolefins. However, there is only little information about the use of a degraded polyolefins to induce compatibilization. This is even truer, as far as polyamide 6/polypropylene (PA6/PP) blends are concerned. In this work, compatibilization of PA6/PP blends by using small amounts of photo-oxidized PP was investigated
Morphology, rheology, and mechanical properties of a new nanobiocomposite
Nanobiocomposites are a new class of biodegradable polymer materials with an ultrafine phase dispersion of the order of a few nanometers in a biodegradable polymer matrix that shows very interesting properties often very different from those of conventional filled polymers. In this work the morphology and the rheological and mechanical properties of a new nanobiocomposite made of a biodegradable copolyester based blend with an organomodified montmorillonite have been investigated to evaluate its possible use in several applications. SAXS diffractograms and TEM micrographs show that the in both the adopted processing conditions an hybrid intercalated/exfoliated morphology is observed. Rheolo…