0000000000025538

AUTHOR

M. Gschwender

showing 12 related works from this author

A high precision calorimeter for hunting the sterile neutrino in the SOX experiment

2019

Abstract A thermal calorimetric apparatus was designed, built and calibrated for measuring the activity of the artificial 144 Ce —144 Pr antineutrino source. This measurement will be performed at the Laboratori Nazionali del Gran Sasso in Italy, just before the source insertion in the tunnel under the Borexino detector and a precision better than 1% is required for a disappearance technique measurement in the SOX (Short distance neutrino Oscillation with BoreXino) project. In this work the apparatus is described and the most important results from the calibration measurements are shown, where the final precision of few per thousand is demonstrated.

PaperPhysicsHistorySterile neutrinoDetectorddc:Computer Science ApplicationsEducationShort distanceCalorimeterNuclear physicsThermalCalibrationNeutrino oscillationBorexino
researchProduct

Solar neutrino physics with Borexino

2018

We present the most recent solar neutrino results from the Borexino experiment at the Gran Sasso underground laboratory. In particular, refined measurements of all neutrinos produced in the {\it pp} fusion chain have been made. It is the first time that the same detector measures the entire range of solar neutrinos at once. These new data weakly favor a high-metallicity Sun. Prospects for measuring CNO solar neutrinos are also discussed.

fusionPhysics - Instrumentation and Detectorsneutrino: solarPhysics::Instrumentation and DetectorsQC1-999Astrophysics::High Energy Astrophysical PhenomenaSolar neutrinoFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesNuclear physics0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Nuclear Experiment (nucl-ex)Nuclear Experiment010303 astronomy & astrophysicsBorexinoPhysicsp p: fusion010308 nuclear & particles physicsPhysicsHigh Energy Physics::PhenomenologyInstrumentation and Detectors (physics.ins-det)Gran Sasso* Automatic Keywords *Physics::Space PhysicsUnderground laboratoryBorexinoHigh Energy Physics::ExperimentAstrophysics::Earth and Planetary AstrophysicsNeutrinoexperimental resultsSciPost Physics Proceedings
researchProduct

Recent Borexino results and perspectives of the SOX measurement

2017

International audience; Borexino is a liquid scintillator detector sited underground in the Laboratori Nazionali del Gran Sasso (Italy). Its physics program, until the end of this year, is focussed on the study of solar neutrinos, in particular from the Beryllium, pp, pep and CNO fusion reactions. Knowing the reaction chains in the sun provides insights towards physics disciplines such as astrophysics (star physics, star formation, etc.), astroparticle and particle physics. Phase II started in 2011 and its aim is to improve the phase I results, in particular the measurements of the neutrino fluxes from the pep and CNO processes. By the end of this year, data taking from the sun will be over…

Sterile neutrinoneutrino: solarPhysics::Instrumentation and DetectorsSolar neutrinoQC1-999scintillation counter: liquidanomaly[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energy01 natural sciencesStandard ModelNuclear physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear fusion010306 general physicsNeutrino oscillationBorexinoPhysicsgallium010308 nuclear & particles physicsStar formationPhysicsstar: formationstabilityneutrino: sterilesensitivityberylliumGran SassoLSNDelectron: lifetimeHigh Energy Physics::ExperimentBorexinoneutrino: oscillationnuclear reactorNeutrinoneutrino: geophysicstalk: Kolymbari 2017/08/17experimental results
researchProduct

The measurement of the pp chain solar neutrinos in Borexino

2019

Proton–proton chain reactionPhysicsParticle physicsSolar neutrinoBorexino
researchProduct

Search for low-energy neutrinos from astrophysical sources with Borexino

2019

We report on searches for neutrinos and antineutrinos from astrophysical sources performed with the Borexino detector at the Laboratori Nazionali del Gran Sasso in Italy. Electron antineutrinos ($\bar{\nu}_e$) are detected in an organic liquid scintillator through the inverse $\beta$-decay reaction. In the present work we set model-independent upper limits in the energy range 1.8-16.8 MeV on neutrino fluxes from unknown sources that improve our previous results, on average, by a factor 2.5. Using the same data set, we first obtain experimental constraints on the diffuse supernova $\bar{\nu}_e$ fluxes in the previously unexplored region below 8 MeV. A search for $\bar{\nu}_e$ in the solar ne…

antineutrinosPhysics - Instrumentation and Detectorssolar flaresmagnetic field: highneutrino: solarPhysics::Instrumentation and DetectorsSolar neutrinoscintillation counter: liquidelastic scatteringantineutrino/e: particle identification01 natural sciences7. Clean energyneutrino: fluxlaw.inventionHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)law[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]neutrino: supernova26.65.+t010303 astronomy & astrophysicsBorexinoElastic scatteringPhysicsSolar flareSupernova Relic Neutrinosneutrino: energy spectrumS067EB8neutrinosInstrumentation and Detectors (physics.ins-det)neutrino: magnetic momentDiffuse Supernova Neutrino Background3. Good healthSupernovaHomestakeddc:540neutrino: flavorAntineutrinoBorexinoNeutrino97.60.BwHomestake experimentFlareantineutrino/e: fluxAntineutrinos13.15.+G; 26.65.+T; 29.40.Mc; 97.60.Bw; Antineutrinos; Diffuse supernova neutrino background; Neutrinos; Solar flares; Supernova relic neutrinosAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesSupernova relic neutrinosupernova relic neutrinosNONuclear physics13.15.+gPE2_2Antineutrinos; Neutrinos; Diffuse supernova neutrino background; Supernova relic neutrinos; Solar flares0103 physical sciencesNeutrino[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Neutrinosdiffuse supernova neutrino background010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyAstronomy and Astrophysicsneutrino: particle source29.40.McGran SassoSolar flareSolar Flares13. Climate actionspectralHigh Energy Physics::Experimentexperimental results
researchProduct

Perspectives for CNO neutrino detection in Borexino

2018

International audience; Borexino measured with unprecedented accuracy the fluxes of solar neutrinos emitted at all the steps of the pp fusion chain. Still missing is the measurement of the flux of neutrinos produced in the CNO cycle. A positive measurement of the CNO neutrino flux is of fundamental importance for understanding the evolution of stars and addressing the unresolved controversy on the solar abundances. The measurement of the CNO neutrino flux in Borexino is challenging because of the low intensity of this component (CNO cycle accounts for about 1% of the energy emitted by Sun), the lack of prominent spectral features and the presence of background sources. The main background c…

CNO cycleexperimental methodsneutrino: solarPhysics::Instrumentation and DetectorsSolar neutrinoAstrophysics::High Energy Astrophysical Phenomenascintillation counter: liquidSolar neutrinosbismuth: admixtureAstrophysics[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energySolar neutrinoCNO-cycleneutrino: fluxAstrophysics::Solar and Stellar Astrophysics[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Stellar evolutionBorexinoliquid scintillatorAstrophysics::Galaxy AstrophysicsPhysicsEnergy distributiondetectorbackgroundbismuth: nuclideCNO cycleNeutrino detector13. Climate actionBorexinoExperimental methodsNeutrino
researchProduct

CeSOX: An experimental test of the sterile neutrino hypothesis with Borexino

2017

International audience; The third phase of the Borexino experiment that’s referred to as SOX is devoted to test the hypothesis of the existence of one (or more) sterile neutrinos at a short baseline (~5–10m). The experimental measurement will be made with artificial sources namely with a 144Ce–144Pr antineutrino source at the first stage (CeSOX) and possibly with a 51Cr neutrino source at the second one. The fixed 144Ce–144Pr sample will be placed beneath the detector in a special pit and the initial activity will be about 100 – 150 kCi. The start of data taking is scheduled for April 2018. The article gives a short description of the preparation for the first stage and shows the expected s…

Physicsneutrino: sterile: search forHistorySterile neutrinoParticle physics010308 nuclear & particles physicsInitial activitysensitivity01 natural sciencesComputer Science ApplicationsEducationPHYSICSPhysics and Astronomy (all)cesium0103 physical sciencesOSCILLATIONS[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]ddc:530Borexinoproposed experimentNeutrino010306 general physicsantineutrino: particle sourceBorexinotalk: Moscow 2017/10/02
researchProduct

The Large Observatory For x-ray Timing

2014

The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final down-selection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supra-nuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m 2 effective area, 2-30 keV, 240 eV spectral resolution, 1 deg collimated field of view) and a WideFi…

x-ray and γ-ray instrumentationcompact objects; microchannel plates; X-ray detectors; X-ray imaging; X-ray spectroscopy; X-ray timing; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic EngineeringVisionX-ray timingObservatoriesField of view01 natural sciences7. Clean energyneutron starsObservatory010303 astronomy & astrophysicsPhysicsEquipment and servicesApplied MathematicsAstrophysics::Instrumentation and Methods for AstrophysicsSteradian[ SDU.ASTR.IM ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Computer Science Applications1707 Computer Vision and Pattern RecognitionX-ray detectorsCondensed Matter Physicscompact objectsX-ray spectroscopyAstrophysics - Instrumentation and Methods for AstrophysicsX-ray detector[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Cosmic VisionSpectral resolutionmicrochannel platesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesNOmicrochannel platecompact objects; microchannel plates; X-ray detectors; X-ray imaging; X-ray spectroscopy; X-ray timing; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Applied Mathematics; Electrical and Electronic EngineeringSettore FIS/05 - Astronomia e AstrofisicaX-rayscompact object0103 physical sciencesElectronicOptical and Magnetic MaterialsElectrical and Electronic EngineeringSpectral resolutionInstrumentation and Methods for Astrophysics (astro-ph.IM)dense hadronic matterSensors010308 nuclear & particles physicsX-ray imagingAstronomyAccretion (astrophysics)[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Neutron star13. Climate actionx-ray and γ-ray instrumentation; neutron stars; dense hadronic matter[ PHYS.ASTR.IM ] Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Gamma-ray burstastro-ph.IM
researchProduct

Solar neutrino spectroscopy in Borexino

2018

International audience; In more than ten years of operation, Borexino has performed a precision measurement of the solar neutrino spectrum, resolving almost all spectral components originating from the proton-proton fusion chain. The presentation will review the results recently released for the second data taking phase 2012–2016 during which the detector excelled by its unprecedentedly low background levels. New results on the rate of pp, 7Be, pep and 8B neutrinos as well as their implications for solar neutrino oscillations and metallicity are discussed.

neutrino: solarPhysics::Instrumentation and DetectorsSolar neutrinoMetallicityNuclear physicsbackground: lowneutrino: spectrum[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Neutrino oscillationSpectroscopyBorexinoPhysicsProton–proton chain reactionpp-chainp p: fusionprecision measurementDetector* Automatic Keywords *13. Climate actionsolar neutrinosspectralHigh Energy Physics::ExperimentBorexinoneutrino: oscillationNeutrino[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

A calorimeter for the precise determination of the activity of the 144Ce-144Pr anti-neutrino source in the SOX experiment

2018

We describe the design and the performance of a high precision thermal calorimeter, whose purpose was the measurement of the total activity of the 144Ce-144Pr anti-neutrino source of the SOX (Short distance neutrino Oscillation with BoreXino) experiment. SOX aimed at the search for eV-scale sterile neutrinos by means of the Borexino detector at the Laboratori Nazionali del Gran Sasso in Italy and of a very powerful artificial anti-neutrino source located at 8.51 m from the detector center. In order to obtain the required sensitivity, the activity of the source (approximately 150 kCi) had to be known at 1% precision. In this work we report the design of the experimental apparatus and the res…

PhysicsRadiation monitoringPhysics::Instrumentation and Detectors010308 nuclear & particles physicsDetector01 natural sciencesParticle detectorCalorimeterNuclear physicsCalorimetersNeutrino detectorMockup0103 physical sciencesHigh Energy Physics::ExperimentNeutrinoCalorimeters; Radiation monitoring; Instrumentation; Mathematical Physics010306 general physicsNeutrino oscillationInstrumentationMathematical PhysicsBorexinoJournal of Instrumentation
researchProduct

Solar neutrino detectors as sterile neutrino hunters

2016

International audience; The large size and the very low radioactive background of solar neutrino detectors such as Borexino at the Gran Sasso Laboratory in Italy offer a unique opportunity to probe the existence of neutrino oscillations into new sterile components by means of carefully designed and well calibrated anti-neutrino and neutrino artificial sources. In this paper we briefly summarise the key elements of the SOX experiment, a program for the search of sterile neutrinos (and other short distance effects) by means of a (144)Ce-(144)Pr anti-neutrino source and, possibly in the medium term future, with a (51)Cr neutrino source.

HistorySterile neutrinoParticle physicsneutrino: solarPhysics::Instrumentation and DetectorsSolar neutrinoAstrophysics::High Energy Astrophysical Phenomena01 natural sciences7. Clean energyEducationPhysics and Astronomy (all)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex][PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsNeutrino oscillationnuclideBorexinoPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologySolar neutrino problemneutrino: sterileComputer Science ApplicationspraseodymiumGran Sassoneutrino: detectorNeutrino detectorcerium: nuclideHigh Energy Physics::Experimentneutrino: oscillationNeutrino astronomyNeutrinoantineutrino: particle source[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Simultaneous precision spectroscopy of pp, Be7, and pep solar neutrinos with Borexino Phase-II

2019

We present the simultaneous measurement of the interaction rates Rpp, RBe, Rpep of pp, Be7, and pep solar neutrinos performed with a global fit to the Borexino data in an extended energy range (0.19–2.93) MeV with particular attention to details of the analysis methods. This result was obtained by analyzing 1291.51 days of Borexino Phase-II data, collected after an extensive scintillator purification campaign. Using counts per day (cpd)/100 ton as unit, we find Rpp=134±10(stat)−10+6(sys), RBe=48.3±1.1(stat)−0.7+0.4(sys); and RpepHZ=2.43±0.36(stat)−0.22+0.15(sys) assuming the interaction rate RCNO of CNO-cycle (Carbon, Nitrogen, Oxigen) solar neutrinos according to the prediction of the high…

Physical Review
researchProduct