0000000000025872
AUTHOR
Massimiliano Guasoni
A universal all-fiber omnipolarizer
The all-optical control of light polarization is nowadays a fundamental issue which finds important applications in optical networks. In this field, the research has moved on the development of nonlinear methods of re-polarization of a partially coherent and initially depolarized light [1]. The main drawback of most of these devices is that they suffer from a large amount of output Relative-Intensity-Noise (RIN). However, a class of polarizers have been recently proposed which is based on the nonlinear interaction between two optical beams counter-propagating in a fiber [2]: in these devices the arbitrary state of polarization (SOP) of one of the two beams (signal) is attracted towards a sp…
Random bit generation through polarization chaos in nonlinear optical fibers
Nowadays, cryptographic applications are becoming of paramount importance in order to guarantee ultimately secure communications. Performances of classical and quantum key distribution and encryption algorithms are strongly dependent on the used Random Number Generator (RNG). A good RNG must produce unpredictable, unreproducible and unbiased sequences of numbers. For this reason, many true random number generators relying on chaotic physical phenomena, such as chaotic oscillations of high-bandwidth lasers [1, 2] or polarization chaos from a VCSEL diode [3], have been developed. In this work, we propose a RNG implementation based on a different physical mechanism than the ones previously use…
Generalized modulational instability in multimode fibers: Wideband multimode parametric amplification
In this paper intermodal modulational instability (IM-MI) is analyzed in a multimode fiber where several spatial and polarization modes propagate. The coupled nonlinear Schr\"odinger equations describing the modal evolution in the fiber are linearized and reduced to an eigenvalue problem. As a result, the amplification of each mode can be described by means of the eigenvalues and eigenvectors of a matrix that stores the information about the dispersion properties of the modes and the modal power distribution of the pump. Some useful analytical formulas are also provided that estimate the modal amplification as function of the system parameters. Finally, the impact of third-order dispersion …
Optical flip-flop memory and data packet switching operation based on polarization bistability in a telecommunication optical fiber
We report the experimental observation of bistability and hysteresis phenomena of the polarization signal in a telecommunication optical fiber. This process occurs in a counterpropagating configuration in which the optical beam nonlinearly interacts with its own Bragg-reflected replica at the fiber output. The proof of principle of optical flip–flop memory and 10 Gbit/s routing operation is also reported based on this polarization bistability. Finally, we also provide a general physical understanding of this behavior on the basis of a geometrical analysis of an effective model of the dynamics. Good quantitative agreement between theory and experiment is obtained.
Sampling and amplification technique based on XPM-induced focusing in normally dispersive optical fibers
International audience; We theoretically and experimentally investigate an all-optical amplification and sampling technique based on a XPM process between an arbitrary signal and an intense orthogonally polarized high repetition rate sinusoidal pump wave within a normally dispersive optical fiber.
Optical flip-flop memory and routing operation based on polarization bistability in optical fiber
A polarization bistability and hysteresis cycle phenomenon is demonstrated in optical fibers thanks to a counter-propagating four-wave mixing interaction. Based on this process, we successfully report the proof-of-principle of an optical flip-flop memory and a 10-Gbit/s routing operation.
40 GHz pulse source based on cross-phase modulation-induced focusing in normally dispersive optical fibers.
We theoretically and experimentally investigate the design of a high-repetition rate source delivering well-separated optical pulses due to the nonlinear compression of a dual-frequency beat signal within a cavity-less normally dispersive fiber-based setup. This system is well described by a set of two coupled nonlinear Schrodinger equations for which the traditional normally dispersive defocusing regime is turned in a focusing temporal lens through a degenerated cross-phase modulation process (XPM). More precisely, the temporal compression of the initial beating is performed by the combined effects of normal dispersion and XPM-induced nonlinear phase shift provided by an intense beat signa…
40-GHz Pulse Source Based on XPM-Induced Focusing in Normally Dispersive Optical Fiber
International audience
All-optical regeneration of polarization of a 40 Gbit/s return-to-zero telecommunication signal
International audience; We report all-optical regeneration of the state of polarization of a 40 Gbit/s return-to-zero telecommunication signal. The device discussed here consists of a 6.2-km-long nonzero dispersion-shifted fiber, with low polarization mode dispersion, pumped from the output end by a backward propagating wave coming from either an external continuous source or a reflection of the signal. An initially scrambled signal acquires a degree of polarization close to 100% toward the polarization generator output. All-optical regeneration is confirmed by means of polarization and bit-error-rate measurements as well as real-time observation of the eye diagrams. We show that the physic…
Intensity noise-driven nonlinear fiber polarization scrambler
We propose and analyze a novel all-optical fiber polarization scrambler based on the transfer (via the Kerr effect) of the intensity fluctuations of an incoherent pump beam into polarization fluctuations of a frequency-shifted signal beam, copropagating in a randomly birefringent telecom fiber. Optimal signal polarization scrambling results whenever the input signal and pump beams have nearly orthogonal states of polarization. The nonlinear polarization scrambler may operate on either cw or high-bit-rate pulsed signals.
Self-polarization effect in the middle point of an optical fiber
In this paper, we report both numerically and experimentally an unexpected phenomenon of self-polarization occurring in the middle point of an isotropic optical fiber when two uncorrelated partially polarized waves are simultaneously injected at the ends of the fiber. More precisely, we demonstrate that two counterpropagating waves of equal intensity exhibit a spontaneous organization of their polarization states around two pools of attraction just in the middle point of propagation, and then both recover a partially polarized state at their respective fiber outputs. The self-polarization effect then remains hidden within the optical fiber in the sense that no apparent sign of this process …
Line of polarization attraction in highly birefringent optical fibers
We investigate the phenomenon of polarization attraction in a highly birefringent fiber. This polarization process originates from the nonlinear interaction of two counter-propagating beams. We show that all polarization states of the forward (signal) beam are attracted toward a specific line of polarization states on the surface of the Poincare sphere, whose characteristics are determined by the polarization state of the injected backward (pump) beam. This phenomenon of polarization attraction takes place without any loss of energy for the signal beam. The stability of different stationary solutions is also discussed through intensive numerical simulations. On the basis of mathematical tec…
Self-Organization of Polarization State in Optical Fibers
All-Optical Polarization Control for Telecom Applications
We describe a phenomenon of self-organization of the light state-of-polarization in optical fibers based on a nonlinear cross-polarization interaction between an incident signal and its backward replica. Several proof-of-principles for telecom applications are reported.
Fast polarization scrambler based on chaotic dynamics in optical fibers
All-fiber based chaotic polarization scrambler
We present a fiber-based polarization scrambler founded on the nonlinear interaction between a signal and its backward replica generated and amplified by a reflective loop. The output polarization dynamic turns out to be chaotic.
A universal all-fiber Omnipolarizer
We report the experimental observation of self-polarization of light in optical fibers through a counter-propagating four-wave mixing between an incident signal and its backward replica. An efficient self-polarization of a 40-Gbit/s signal is demonstrated.
Theory of modal attraction in bimodal birefringent optical fibers
Nonlinear mode coupling among two beams of different wavelength that copropagate in a bimodal highly birefringent optical fiber may lead to the effect of modal attraction. Under such circumstances, the modal distribution of light at a pump wavelength is replicated at the signal wavelength, nearly irrespective of the input mode excitation conditions of the signal.
Giant collective incoherent shock waves in strong turbulence
Contrary to conventional coherent shocks, we show theoretically and experimentally that nonlocal turbulent flows lead to the emergence of large-scale incoherent shock waves, which constitute a collective phenomenon of the incoherent field as a whole.
Temporal spying and concealing process in fibre-optic data transmission systems through polarization bypass
Recent research has been focused on the ability to manipulate a light beam in such a way to hide, namely to cloak, an event over a finite time or localization in space. The main idea is to create a hole or a gap in the spatial or time domain so as to allow for an object or data to be kept hidden for a while and then to be restored. By enlarging the field of applications of this concept to telecommunications, researchers have recently reported the possibility to hide transmitted data in an optical fibre. Here we report the first experimental demonstration of perpetual temporal spying and blinding process of optical data in fibre-optic transmission line based on polarization bypass. We succes…
DH_Results_XORedData_100samplesDelay.pdf
Results of the dieharder tests